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As networks get more complex, the ability to track almost all the flows is becoming of paramount importance.
This is because we can then detect transient events impacting only a subset of the traffic. Solutions for flow
monitoring exist, but it is getting very difficult to produce accurate estimations for every <flowID,counter>
tuple given the memory constraints of commodity programmable switches. Indeed, as networks grow in size,
more flows have to be tracked, increasing the number of tuples to be recorded. At the same time, end-host
virtualization requires more specific flowIDs, enlarging the memory cost for every single entry. Finally, the
available memory resources have to be shared with other important functions as well (e.g., load balancing,
forwarding, ACL).

To address those issues, we present FlowLiDAR (Flow Lightweight Detection and Ranging), a new solution
that is capable of tracking almost all the flows in the network while requiring only a modest amount of data
plane memory which is not dependent on the size of flowIDs. We implemented the scheme in P4, tested it
using real traffic from ISPs and compared it against four state-of-the-art solutions: FlowRadar, NZE, PR-sketch,
and Elastic Sketch. While those can only reconstruct up to 60% of the tuples, FlowLiDAR can track 98.7% of
them with the same amount of memory.
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1 INTRODUCTION
Nowadays, telemetry is the foundation for many network management tasks such as traffic en-
gineering, performance diagnosis, and attack detection [6, 24, 25, 29, 52, 56, 60–62]. In particular,
flow-level monitoring is a first-class citizen, as it allows the debugging (e.g., the process of finding
causes and victims) of many performance-critical data plane events, such as packet drops [35, 62],
congestion [36] or path change [6, 29]. Here, it is of paramount importance capturing information
related to almost all flows, so to guarantee fine-grained traffic analysis [25] that make it possible to
detect events impacting only a subset of the traffic (e.g., transient loops [32], blackholes [61], and
switch faults [62]). Unfortunately, although state-of-the-art programmable switch ASICs allow for
a configurable per-packet logic, they are also well-known to be resource constrained [30, 41, 47],
limiting their ability to record all flows in the network.

Solutions for flow-level monitoring exist [23, 34, 50, 59], but three trends are making this practice
a steadily more challenging task: (1) networking devices are becoming commonly adopted in support
of many use-cases, impacting the amount of resources to be solely dedicated to flow-monitoring; (2)
the increase in switches’ per-port capacity has consistently outpaced the growth of their internal
ASIC memory, making the latter a very scarce resource; (3) the rise of end-host virtualization

Authors’ addresses: Andrea Monterubbiano, University of Rome - Sapienza, Rome, Italy; Jonatan Langlet, Queen Mary
University of London, London, UK; Stefan Walzer, Cologne University, Cologne, Germany; Gianni Antichi, Politecnico di
Milano and Queen Mary University of London, Milan,London, Italy,UK; Pedro Reviriego, Universidad Politécnica de Madrid,
Madrid, Spain; Salvatore Pontarelli, University of Rome - Sapienza, Rome, Italy.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 044. Publication date: December 2023.

https://doi.org/10.1145/XXXXXXX


044:2

and cloud-native services imposes flow IDs that are larger than the common 5-tuple [3, 17] (i.e.,
IPs, protocol and layer 4 ports) further adding pressure to the memory requirements of flow-level
telemetry.
In an effort to reduce the memory requirements at switches, the research community has been

proposing various solutions [23, 34, 54]. Some rely on probabilistic data structures with bounded
errors to store counters and keep track only of the flowIDs for heavy flows (e.g., ElasticSketch [54])
so to enable the reconstruction of <flowID, counter> tuples. The problem is that they can suffer of
potentially unacceptable inaccuracies when required to track short flows [23]. Others encode flowIDs
and associated counters directly in the ASIC (e.g., FlowRadar [34]) or adopt signal-processing
techniques to limit the amount of resources to be used (e.g., NZE [23]). Although they can potentially
track all flows in the network, they experience a loss in accuracy when fine-grained flow-level
telemetry (i.e., flow IDs more specific than the standard 5-tuple) is needed (§ 2). An alternative
approach in this scenario is to send the flowIDs to the control plane and keep only the counters in
the dataplane as done in the PR-sketch [49]. This makes the dataplane memory independent of
the flowID size. However, the dataplane memory needed for the filter used to detect flows and the
counters is still large, limiting the number of flows that can be monitored.
We present FlowLiDAR (§ 3), a new solution that can track almost all flows present in the

network. As in the PR-sketch we decouple flowIDs from their associated counters. The former
are continuously reported from the ASIC and stored in the switch OS, while the latter are stored
directly in the ASIC using a combination of probabilistic data structures. This allows to have a
system where the required dataplane memory does not depend anymore on how big flowIDs are.
At the end of a configurable time window, both parts of the information can be combined together
to retrieve the exact <flowID, counter> values for almost all the flows.

FlowLIDAR introduces key innovations over the PR-sketch design that allow us to significantly
reduce the amount of data plane memory needed to achieve close to 100% accuracy in the estimation
of the flows. For example, we use an exact equation solving in the dataplane to extract the size of
the flows from the counters at the end of a measurement epoch. We also propose a new mechanism,
named lazy updates that eliminates the need to use counters in the ASIC for most flows that have
only one or a few packets. This not only reduces the dataplane memory needed for the counters, it
also reduces the complexity of the equation solving and improves its accuracy. We implemented
FlowLiDAR in P4 (§ 4) and tested against real traffic traces taken from a large ISP (§ 5). We found that
using the same amount of memory, it improves the accuracy of flow counting in terms of average
relative error (ARE) and average absolute error (AAE) when compared against state-of-the-art
solutions such as NZE, the PR-Sketch and Elastic Sketch by up to 10x, 100x, and 100x, respectively.
Moreover, while FlowLiDAR is able to successfully track 98.7% of existing flows, other techniques
can only reconstruct up to 60% of them. The main novelties and features of our proposed flow
monitoring scheme, FlowLiDAR are:

(1) Most flows with only one or a few packets do not use counters in the dataplane. This reduces
the number of counters needed very significantly as most flows tend to have few packets.

(2) The extraction of the values from the shared counters is done using a mathematical formula-
tion that increases the accuracy of the flow packet count estimates and reduces the memory
needed.

(3) It can be efficiently implemented in programmable dataplanes using P4.
(4) It outperforms state of the art algorithms in terms of memory vs accuracy trade-off.
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2 MOTIVATION
Tracking all flows present in a network is of paramount importance [23, 34, 50, 53]. This is because
it allows to capture events that otherwise would be easily missed: transient loops, blackholes, and
switch faults (i.e., data centers operators have reported table corruptions that lead to packet losses
or incorrect forwarding for a small portion of the traffic [62]). Those may affect just a few packets
during a very short time period introducing losses into the network. The problem is that even
just a few losses can cause significant tail-latency increases and throughput drops for both TCP
and RDMA traffic, potentially leading to violations of service level agreements (SLAs) and even a
decrease of revenue [10]. Unfortunately, tracking all flows with high precision is also becoming
increasingly difficult, mainly because of three main trends:

Trend #1: networking devices are progressively used in support of many use-cases. The
rise of programmable data-planes has allowed the research community to explore their help in
support of a widespread number of applications: congestion control [20, 36], load balancing [2, 28],
caching [26] or machine learning accelerators [46], to name a few.
Consequence: the more functions are added to the data-plane, the more pressure is put on its
memory and logic resources, further reducing its (already limited) capabilities when it comes to
just flow-level telemetry.
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Fig. 1. Memory/bandwidth ratio of different Broadcom Toma-
hawk switch generations

Trend #2: increasing mismatch
between link speeds and memory
capacity. In the last decade, switch-
ing ASICs have increased their aggre-
gate capacity from less than a Tb/s to
more than 50 Tb/s.1 This has allowed
state-of-the-art switches to support
more and higher-bandwidth physical
ports. The direct consequence is the
need to internally support the record-
ing of an ever-increasing number of
flows: from an analysis of real traffic
traces has been indeed estimated the
presence of 120K active flows per Gbps
of traffic, leading to over 3000M for 25.6 Tbps switches [47]. Unfortunately, such an increase in
switch speed has consistently outpaced the growth of its internal ASIC memory. In Figure 1, we
compare the aggregate bandwidth against the internal memory available for the latest generations
of state-of-the-art Broadcom switches2. Here we can see, that the memory is not keeping up with
the bandwidth.
Consequence: there is an increasing need to record more flows with less memory.

Trend #3: the need for larger flowIDs. The rise of end-host virtualization, consolidating possibly
a very large number of diverse services on a single system, and the rapid convergence of cloud-
native service access APIs based on the HTTP communication protocol [3, 4] are posing new
challenges in flow-level telemetry. Indeed, the increasing generality of higher-layer protocols, such
as HTTP, has led operators to explore their feasibility beyond the Web, i.e., for media streaming

1A detailed discussion is available at https://elegantnetwork.github.io/posts/A-Summary-of-Network-ASICs/
2Data are taken from https://people.ucsc.edu/~warner/buffer.html
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(i.e., WebRTC3), remote procedure calls (i.e., gRPC4), data center networking [4] or transport of
DNS. Crucially, when everything is encoded into HTTP, basic L2–L4-layer insight into traffic is no
longer adequate to understand network behavior [3]. Indeed, the traditional five-tuple is of little
use when the destination port is uniformly 80 (HTTP) or 443 (HTTPS) regardless of whether a
particular traffic instance is a REST API call or a long-lived media stream.
Consequence: there is a need for storing more fine-grained flow identifiers using additional packet
header fields, which in turn puts even more pressure on the memory requirements in the ASIC.

2.1 Limits of the current solutions
In an effort to address the challenges imposed by the aforementioned trends, state-of-the-art
solutions commonly use probabilistic data structures [34, 37, 54] to reduce the switch memory
requirements at the cost of query accuracy. Despite their theoretical error bounds, existing solu-
tions still suffer to provide comprehensive guarantees for all flows in a network. This is because
existing algorithms are typically designed to provide guarantees for specific flows (e.g., heavy
hitters [14, 48] or super-spreaders [58]) and/or aggregated flow statistics (e.g., cardinality [15] or
traffic distribution [31]). As a consequence, when applying these solutions to the entire traffic,
the derived bounds are too coarse-grained to work. This leads to a considerable gap: only a small
portion of flows actually benefit from the theoretical bounds, while the remaining flows still exhibit
poor accuracy.
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Fig. 2. Fraction of flows that can be monitored with a fixed
amount of memory for ElasticSketch (ES), NZE, FlowRadar (FR),
PR-Sketch (PR), and FlowLiDAR

A recent paper has highlighted this
issue and proposed a solution [23],
named Near Zero Error (NZE) which,
as its name states, reduces the er-
rors but does not completely elim-
inate them. In more detail, accu-
racy for small flows is still not guar-
anteed, especially if many bits are
needed for the flow identifiers. There-
fore, the problem still remains when
taking into consideration trend #3:
when adopting increasingly bigger
flow identifiers. This has been ad-
dressed by the PR-sketch that sends
all the flowIDs to the control plane
and keeps only the flow detector and the counters on the dataplane [49]. However, the PR-sketch
still requires a significant amount of dataplane memory per flow (see Section 5.3 for details), mak-
ing it less efficient than existing solutions except for very large flowIDs. To better understand
this, we conducted an experiment and compared different state-of-the-art algorithms (i.e., Elastic
Sketch [54], NZE [23], FlowRadar [34] and the PR-sketch [49]). In Figure 2, we show the fraction
of flows that can be accurately tracked when using a fixed amount of memory, i.e., 10 MB and
considering 1.2M active flows to be tracked [47].
In this situation, NZE can successfully track all flows only if flowIDs are just 32 bits (an IP

address). When a more fine-grained flow analysis is needed, larger flow identifiers must be adopted,
impacting the ability of NZE to track all flows. Indeed, when using just the standard 5-tuple, the
flow coverage can drop to 60%. On the other hand, ElasticSketch is able to track only 90% of flows

3https://webrtc.org/
4https://grpc.io/
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with high accuracy (<1% relative error) with 32 bits, but its performance degrades more gracefully
than NZE5. FlowRadar is not able to track all flows for any flowID size and its coverage is lower
than that of NZE and Elastic Sketch. When more packet header fields need to be considered, as
in the case of tunneled connections requiring VXLAN + 5-tuple or when upper layer protocol
headers are needed, the flow coverage can drop further: in the presence of 256-bits flowIDs, the
flow coverage of Elastic Sketch, NZE and FlowRadar drop to approximately 60%, 35% and 20%,
respectively which is clearly not acceptable. Finally, the PR-sketch flow coverage does not depend
on the flowID size as expected but it is below 40%, so worse than existing schemes for small flowID
sizes and also not acceptable. Instead, our solution is able to track more than 99% of flows regardless
of flowID size.

3 LIGHTWEIGHT DETECTION AND RANGINGWITH FLOWLIDAR
This section first presents our overall approach and then each component of FlowLiDAR is described
in detail.

3.1 Overall Approach
The concept of FlowLiDAR is illustrated in Figure 3 and makes use of both switch data and control
planes. The idea, similarly to [49] is to place all the functions that have to be done per packet in
the data-plane while those that are much less frequent are placed in the control-plane. In more
detail, flow detection and counting of packets is done in the data-plane while the processing of
new flows and the fine grained computation of the number of packets per flow is done in the
control-plane. This approach needs to send information between the control and data planes and
thus the bandwidth on this interface may be an issue. In the following we discuss why this should
not be the case in switching ASICs that have high speed links between both planes and propose
variants of our design that can reduce the amount of information sent on that interface.

Fig. 3. Block diagram of the proposed FlowLiDAR. The data-plane detects
new flows and sends the IDs to the control plane and counts the packets.
The control plane stores the flow IDs and periodically computes the exact
values of the flow lengths

This split is based on
the observation that new
flows are only a small frac-
tion of the packets [27].
This has been corroborated
by analysing the three dif-
ferent CAIDA traces also
used in the evaluation sec-
tion6. The results show that
even on a one second win-
dow, the average number of
packets per flow is in the
range of 5-10 and the num-
ber increases for larger win-
dow sizes. Therefore, in-
stead of storing the flows’
IDs in the switch we can just detect new flows and send their IDs to the control plane. This
eliminates the need to store the flows’ IDs on the data-plane memory thus reducing the memory
5Elastic Sketch uses two main data structures: a hash table for the heavy part, which is flowID size dependent, and a large
count sketch to count the small flows. We chose the memory ratio between the two structures, varying the flowID size to
bound the average relative error below 50%.
6Full names of traces are: equinix-chicago.dirA.20160121-130000.UTC.anon.pcap, equinix-chicago.dirA.20160218-
133000.UTC.anon.pcap, equinix-chicago.dirB.20160317-140000.UTC.anon.pcap
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footprint dramatically. With this idea in mind, what we need to have on the data-plane is the
detection of new flows which can be detected using for example a Bloom filter (BF) [34]. This
detector has to be in the data-plane as all packets have to be checked. In FlowLiDAR, the detector
is a BF that is optimized to reduce its memory footprint [22].

The same reasoning applies to the counters used to count packets, they have to be accessed on
every packet and thus are also placed on the data-plane. In more detail, we use a Count-Min Sketch
(CMS) for packet counting [43]. This enables us to provide in data-plane flow size estimation using
the standard CMS algorithm in real-time. Additionally, snapshots of the BF and CMS are also sent
periodically to the control plane and the data structures are reset to start a new measurement
epoch.

The control plane stores the FlowIDs andwhen it receives a snapshot of the CMS and BF computes
the exact flow sizes using a more complex processing that models the CMS as a system of equations.
Again this is possible as it is done much less frequently than the per packet operations done in
the data plane. Even if extracting the exact values is the main aim of FlowLiDAR, we highlight
that a further memory reduction is possible at the cost of accepting an approximate resolution of
the CMS system of equations. Details about this option are provided in sec. 3.4.3 and evaluated
in 5.4. In the following subsections, we describe each of the FlowLiDAR components in more detail
discussing also the relations and interactions between the blocks.

3.2 Flow Detector
The flow detector has the mission of identifying new flows and sending their IDs to the control
plane. In this subsection we describe three methods to implement the Flow Detector. The first
method is based on a standard BF and provides a baseline for the other two methods. A second
method, based on a modification of the BF that we called lazy BF updates, reduces the false positive
probability of the standard method at the expense of an increase in the bandwidth required by the
control plane. When the control plane bandwidth is a bottleneck we can use a third method. This
method is based on the idea of sending to the control plane only the FlowIDs of flows that were
not present in the previous epoch. To this aim, we use a pair of BF, one storing the FlowIDs of the
previous epoch and one that stores those of the current epoch. In all cases, flow detection is done
as soon as the first packet of the flow returns a negative on the BF and it is immediately reported
to the control plane, a process that takes only a few microseconds in the worst case.

Standard BF. The detection of FlowIDs is done per measurement epoch, so that after taking a
snapshot and sending it to the control plane, the detector is reset to start a new epoch. To this end,
the flow detector has to check all the packets and thus has to perform simple operations. As in
[34],[49], we use a BF to detect new flows. The overall approach is to check each packet on the
BF and on a negative, insert the flow on the BF (so that subsequent packets of the flow return a
positive), and send its FlowID to the control plane. The use of a BF eliminates the need to store all
the FlowIDs to detect new flows thus reducing the memory needed. However, it has the drawback
of having false positives so that a few flows may not be detected. For a given number of target
flows, the probability of false positives can be made small by appropriately selecting the BF array
size𝑚 and the number of arrays and hash functions 𝑘 . The initial flow detection algorithm is shown
in Algorithm 1.

The BF maps each FlowID to 𝑘 independent arrays of𝑚 bits. The use of independent arrays per
hash function makes it possible to access each position in parallel and facilitates the implementation
in a programmable data plane as will be seen in section 4. Additionally, it enables a more advanced
flow detection scheme that we implement in FlowLiDAR and is described next.
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Algorithm 1 Initial algorithm for flow detection
1: Reset the BF
2: Start the epoch timer
3: for Each packet with FlowID 𝑥 do
4: Query element 𝑥 in the filter
5: if Negative then
6: Add 𝑥 to the filter
7: Send FlowID to the control plane
8: end if
9: Send 𝑥 to packet counting block
10: Timer expired? If yes restart the process
11: end for

The fraction of flows that are not detected during an epoch can be estimated by computing
the false positive probability of the filter when each new flow arrives and then adding all those
probabilities together. The false positive probability of a filter that has 𝑘 arrays of𝑚 bits and on
which 𝑖 elements have been inserted can be approximated by:

𝑃 (𝑖) ≈ (1 − 𝑒− 𝑖
𝑚 )𝑘 (1)

Then if on an epoch there are 𝑛 flows, the fraction of false positives can be estimated by adding
the probabilities of the second flow 𝑃 (1), the third flow 𝑃 (2) and so on until the 𝑛𝑡ℎ flow obtaining:

𝐹𝑃𝑃 ≈
∑𝑛

𝑖=2 𝑃 (𝑖 − 1)
𝑛

(2)

Lazy updates BF. The advanced BF scheme, that we denote as lazy updates BF is based on the
observation that depending on the time between snapshots, most flows may have a single or just a
few packets on that period. As an example for the CAIDA traces used in this paper, we reported in
Table 1 the percentage of flows with just one, two or three packets for a one second epoch.

Table 1. Percentage of flows having one, two or three packets

1-packet 2-packets 3-packets more than 3 packets
39% 18% 10% 33%

When that is the case, it may be
beneficial not to set all the bits for
the new flow in the BF to one but
just one at a time. This would reduce
the number of ones in the filter and
thus its false positive probability. For
example, if 40% of the flows have only
a single packet, we would be reducing by close to 40% the insertions on the second to 𝑘𝑡ℎ arrays.
In fact, using independent arrays is better in this configuration to reduce the false positive rate
similar to what happens in d-left hashing [38]. Deriving the false positive probability for flows in
this advanced scheme is more complex but an approximation can be easily obtained. Let us denote
by 𝑙 ( 𝑗) the fraction of flows that have 𝑗 or more packets in the epoch. Consider a filter with 𝑘
arrays on which 𝑖 elements have been inserted. Then in the 𝑗𝑡ℎ array there will be approximately
𝑖 · 𝑙 ( 𝑗) elements inserted. With that assumption, the false positive probability of the filter can be
computed as the product of the fraction of bits set to one in each array which is given by (1−𝑒−

𝑖 ·𝑙 ( 𝑗 )
𝑚 )

obtaining:

𝑃𝑎 (𝑖) ≈
𝑘∏
𝑗=1

(1 − 𝑒−
𝑖 ·𝑙 ( 𝑗 )
𝑚 ) (3)
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where 𝑙 ( 𝑗) accounts for the fact that a fraction of the flows has 𝑗 or less packets and thus are
not inserted on tables 𝑗 + 1, . . . , 𝑘 unless they suffer false positives on the previous tables. This
approximation would tend to underestimate the false positive probability as there will be false
positives. For example, a flow with a single packet may find the bit set on the first BF table and
would thus be inserted on the second and so forth. Finally, the fraction of flows that are false
positive can be estimated by using 𝑃𝑎 (𝑖) instead of 𝑃 (𝑖) in equation (2).
The price paid when using the advanced scheme is that flows that have more than one packet,

may be sent several times to the control plane. Let us consider the bandwidth needed to send the
FlowIDs to the control plane. Each FlowID has 13 bytes in IPV47. On average the number of packets
per flow is much larger than one, for example even when considering one second windows, the
CAIDA traces have 5-10 packets per flow. Considering an average packet size of 500 bytes, the
overhead would be below 13/(500*5) so roughly 0.5% which would be acceptable in most cases.
Indeed as discussed before, bandwidth grows faster than on-chip memory and thus using a small
fraction of the bandwidth in exchange for a large reduction on the memory needed (as FlowIDs no
longer need to be stored on-chip) is attractive.
Finally, we can also take advantage of this BF optimization to not send the first packets to the

packet counting block this has the side benefit of reducing the load on the CMS as will be seen in
the next subsection. The advanced flow detection is presented in Algorithm 2. Note that although
the algorithm describes a serial implementation, the for loop over the 𝑘 arrays has no temporal
dependencies and thus can be unfolded and executed in parallel with each value of 𝑖 corresponding
to one of the filter arrays.

Algorithm 2 Advanced algorithm for flow detection using lazy updates for the BF
1: Reset the BF
2: Start the epoch timer
3: for Each packet with FlowID 𝑥 do
4: for 𝑖 = 1 to 𝑘 do
5: if ℎ𝑖 (𝑥) == 0 then
6: Set ℎ𝑖 (𝑥) = 1 and 𝑖 = 𝑘
7: Send FlowID to the control plane
8: break
9: else
10: if 𝑖 == 𝑘 then
11: Send 𝑥 to packet counting block
12: end if
13: end if
14: end for
15: Timer expired? If yes restart the process
16: end for

Differential Flow Detector with a pair of BFs. As discussed before, in switching ASICs we do not
expect the control plane bandwidth to be a bottleneck, but there may be other implementations
on which that may be an issue. In those cases, one option is to send to the controller only the
FlowIDs that are not present in the previous epochs. In this way, only the new flows are sent to
the controller, while the old ones are retrieved from the snapshot taken in the previous epoch. In
particular, in this configuration, the Flow Detector uses two BFs. In the first BF, called 𝑜𝑙𝑑𝐵𝐹 all
the FlowIDs of the previous epoch have been inserted. This BF is checked when a packet arrives
7The FlowID is composed of the source and destination IP addresses, the protocol and the source and destination ports.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 044. Publication date: December 2023.



Lightweight Acquisition and Ranging of Flows in the Data Plane 044:9

to avoid sending a FlowID that is already in the snapshot stored in the control plane. The second
BF, called 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝐹 , works as the standard BF and stores all the FlowIDs that have packets in the
current epoch. A FlowID is sent to the controller only if it is not present in both BFs. At the end of a
measurement period, the set of active FlowIDs can be retrieved by merging the FlowIDs sent in the
current epoch and the FlowIDs of the previous snapshot that are still active. These can be extracted
from the previous snapshot by checking which ones are positive in the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝐹 indicating that
with high probability they are still active. At the end of the measurement epoch, the 𝑜𝑙𝑑𝐵𝐹 stores
the content of the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝐹 and the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝐹 is reset. The differential flow detection is presented
in Algorithm 3. We remark that the use of a BF pair has been already explored in literature but
mainly to avoid filter overloading as discussed in [7],[39].

Algorithm 3 Algorithm for flow detection using a pair of BFs
1: copy 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝐹 into 𝑜𝑙𝑑𝐵𝐹
2: reset 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝐹
3: Start the epoch timer
4: for Each packet with FlowID 𝑥 do
5: Query element 𝑥 in the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝐹
6: if Negative then
7: Add 𝑥 to the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝐹
8: Query element 𝑥 in the 𝑜𝑙𝑑𝐵𝐹
9: if Negative then
10: Send FlowID to the control plane
11: end if
12: end if
13: Send 𝑥 to the packet counting block
14: Timer expired? If yes restart the process
15: end for

3.3 Packet Counting
The other data-plane function maps each flow to several arrays of counters and increments one
counter per array as in a CMS. This enables a fast estimation of the flow size by just taking the
minimum of those counters.

Additionally, the CMS contents are sent periodically to the control plane for further analysis. In
that analysis, it is beneficial to have as many counters with a value of zero as possible. To achieve
it, we exploit the BF used to detect new flows as a counter for the first packets (those sent to
the control plane) so that only flows with more than one (or a few if we use the flow detection
optimization) packet in the epoch use the counters. This has a large benefit as a significant fraction
of the flows no longer need a counter.

Different from the standard CMS, we split the CMS into a set of smaller CMS, each indexed by a
master hash function. This choice will introduce a small degradation in the error, but permits to
split the flow analysis presented in subsection 3.4 in a set of disjoint sparse linear systems, thus
providing a significant speed-up in the execution of the flow analysis.

3.4 Postprocessing
The control plane, during each epoch, collects the FlowIDs and at the end of the epoch receives the
contents of the BF and of the CMS. Then using that information the control plane can compute the
exact values of the flow sizes. This is denoted as postprocessing of the information and is done in
three stages, some of which are preprocessing for the final stage in the postprocessing:
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(1) BF preprocessing.
(2) CMS preprocessing.
(3) CMS equations solving.
each of them is described in the following subsections.

3.4.1 BF preprocessing. An interesting observation is that when lazy updates are used, the BF can
be used to identify a fraction of the flows. In more detail, the FlowIDs collected on the control plane
can be tested on the snapshot of the BF received from the data plane and those that return a negative
have for sure not been added to the CMS. This means that their number of packets corresponds to
the number of times that the flowID has been received in the control plane. Therefore, the exact
value of the number of packets is obtained for those flows. Additionally, we can remove them from
further consideration so simplifying the problem. The BF preprocessing is described in Algorithm
4.

Algorithm 4 BF preprocessing with lazy updates
1: Compute the set of distinct flows 𝐷 received in the dataplane in the epoch.
2: Create an empty set 𝐶 for flows to be processed in the CMS.
3: for each FlowID 𝑥 in 𝐷 do
4: Query element 𝑥 in the BF
5: if Negative then
6: Set the number of packets 𝑥 as the number of times it

was received in the control plane.
7: else
8: Add 𝑥 to 𝐶
9: end if
10: end for
11: Use set 𝐶 in the CMS preprocessing step.

3.4.2 CMS preprocessing. Similarly, for any flow that maps to a counter in the CMS with a value
of zero, we can get the exact number of packets by counting the number of times that the flowID
has been received in the control plane. This has to be the case as the flowID is sent to the control
plane when it returns a negative on the filter and after the CMS is updated. Again, these flows can
be removed from further consideration. The CMS preprocessing is described in Algorithm 5.

Algorithm 5 CMS preprocessing
1: Get set 𝐶 of FlowIDs from previous step.
2: for each FlowID 𝑥 in 𝐶 do
3: Query element 𝑥 in the CMS
4: if estimate packet count == 0 then
5: Set the number of packets 𝑥 as the number of times it

was received in the control plane.
6: Remove 𝑥 from 𝐶

7: end if
8: end for
9: Use set 𝐶 in the CMS equations solving step.
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Exact CMS equation solving. Let now F = {𝑓1, . . . , 𝑓𝑛} be the set of FlowIDs for which the packet
count could not yet be identified. Assume for now that there are no false positives in the BF and
hence F is fully known in the control plane (we comment on the effect of false positives below).
Moreover, we have access to the vector b = [𝑏1, . . . , 𝑏𝑚]𝑇 of counters stored in the CMS. The packet
count for flow 𝑓𝑗 is the number of times that 𝑓𝑗 has been received in the control plane plus the
number 𝑥 𝑗 of times that 𝑓𝑗 has been added to the CMS. We write x := [𝑥1, . . . , 𝑥𝑛]𝑇 as a vector. The
challenge is to compute x given b, F and the 𝑘 hash functions ℎ1, . . . , ℎ𝑘 used in the CMS. This
problem can be captured by a system of linear equations

𝐴x = b (4)

where 𝑎𝑖 𝑗 ∈ {0, 1} indicates whether 𝑖 ∈ {ℎ1 (𝑓𝑗 ), . . . , ℎ𝑘 (𝑓𝑗 )}, i.e. whether flow 𝑓𝑗 has contributed to
the counter 𝑏𝑖 . Here we assume that ℎ1 (𝑓𝑗 ), . . . , ℎ𝑘 (𝑓𝑗 ) are pairwise distinct such that a flow cannot
contribute multiple times to the same counter.
The most immediate question is whether x is uniquely determined by equation (4) or whether

there exists x′ ≠ x with b = 𝐴x = 𝐴x′. This is equivalent to the existence of x′′ ≠ 0 with 𝐴x′′ = 0,
which exists if and only if the columns of 𝐴 are linearly dependent.

Table 2. Thresholds for CMS equation solving.

𝑘 3 4 5

𝑐∗
𝑘

0.918 0.977 0.992

Assuming that the 𝑘 hash functions behave
like fully random functions, the columns of
𝐴 ∈ {0, 1}𝑚×𝑛 are stochastically independent
and contain exactly 𝑘 ones per column in uni-
formly random positions. Such matrices have
been studied in the literature on cuckoo hash-
ing and random Boolean formulas [12, 13, 44].
Sharp threshold behaviour with respect to the load factor 𝑐 = 𝑚

𝑛
has been demonstrated. More

precisely, there exists a constant 𝑐∗
𝑘
∈ (0, 1) such that the following holds. For any 𝑐 < 𝑐∗

𝑘
− Y the

matrix 𝐴 has linearly independent columns with probability 1 − 𝑛−Ω (1) , even when F2 = {0, 1} is
used as the underlying field [12, 13, 44] (this implies independence for underlying fields Q and R).
For any 𝑐 > 𝑐∗

𝑘
+ Y there exists with probability 1 − 𝑛−Ω (1) a set 𝐶 of columns of 𝐴 and a set 𝑅 of

rows of 𝐴 with |𝐶 | > |𝑅 | such that all 1-entries within 𝐶 are within 𝑅 [12, 16]. This precludes the
independence of the column set 𝐶 over any field. We reproduce the threshold values in Table 2.
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Fig. 4. Percentage of full-rank matrices with different load
factors and 𝑘 values

The behaviour we see in a simulation
with 100 trials with 𝑘 = 3, 4 and CMS size
of𝑚 = 2𝐾, 4𝐾, 8𝐾, 16𝐾 as shown in Figure
4 matches these asymptotic predictions
quite well.

We remark that the complexity of solv-
ing equation (4) is super-linear in 𝑚. To
improve running times for large 𝑚, one
could attempt to adopt variants of struc-
tured Gaussian elimination as was done
in [18] for solving equation (4) over fi-
nite fields. Alternatively one could use a
smaller load factor exploiting that below
the so-called peeling threshold equation (4)
can be solved in linear time over any group with probability 1 − 𝑛−Ω (1) [21, 42].
We rely on a splitting hash function and solve a set of several small systems, instead of a

single bigger system solving the various systems in parallel, taking advantage of CPU multi-core
architectures. In the evaluation section, we will show how this split reduces the computation time.
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On the issue of false positives. In the case where at least one false positive has occurred in the BF
we only know a subset F1 ⊂ F of the remaining FlowIDs, and we do not know F2 = F \ F1. The
underlying equation is then 𝐴1𝑥1 +𝐴2𝑥2 = 𝑏 where 𝐴 and 𝑥 are sliced into two parts relating to
F1 and F2. With no knowledge of 𝐴2 there is no hope of recovering the counts 𝑥2 for F2. There
are, however, several methods for approximately recovering the counts 𝑥1 for F1 under reasonable
assumptions. In an insightful paper by Ting [51], 𝜖 := 𝐴2𝑥2 is modelled as a random error vector
and our task is to find 𝑥1 that maximizes the likelihood of 𝜖 = 𝑏 −𝐴1𝑥1. If we assume that the |F2 |
entries of 𝜖 are independently sampled from a log-concave distribution 𝐷 , then we obtain a convex
optimization problem. For instance, if 𝐷 is assumed to be a normal distribution, then we recover
the linear least squares method where | |𝐴1𝑥1 − 𝑏 | |2 is to be minimized. This method already yields
decent results in practice [33] despite the unfounded assumption on 𝐷 (e.g. a normal distribution
does not guarantee 𝜖 ≥ 0). For even better accuracy, Ting [51] proposes methods for estimating
𝐷 based on those entries of 𝑏 to which no key in 𝑥1 has contributed. In our implementation, we
compute an approximate value of 𝑥1, called 𝑥1. We have 𝑥1 = 𝐴−1

1 𝑏. The approximation error is
𝑒 = 𝑥1 − 𝑥1 = 𝐴−1

1 𝜖 . Since we target a small FPR, we will have a small value of | |𝜖 | |, since only a
few elements of the vector 𝜖 are different from zero, thus we expect that also | |𝑒 | | will be small.
This is confirmed by our experiments, as we will see in the evaluation section. Furthermore, it
is always possible to compare the solution x provided by the equation solver to the minimum
among the 𝑘 rows of the CMS corresponding to the 𝑥𝑖 variable, choosing the minimum among
these two values. This guarantees that the error due to the BF will be similar to the approximation
of the traditional CMS in the worst case. Finally, we highlight that splitting the system into a set of
smaller independent systems further alleviates this problem. In fact, for most of the subsystems,
the occurrence of false positives has a negligible impact on the overall error, while for the few
subsystems in which this error is significant, we bound the result to those achieved by the traditional
CMS approximation.

3.4.3 Approximate CMS equations solving. If the rank 𝑟 of the matrix is less than the number of
variables 𝑛 the system is underdetermined and has multiple solutions. In particular, the system has
a number of free variables that is 𝑙 = 𝑛 − 𝑟 . In the following, we describe an algorithm to select
the 𝑙 free variables that minimize the absolute error. This algorithm can be used when the exact
CMS equation solving fails. The algorithm, presented as Algorithm 6 selects the system equations
with the smallest constant terms 𝑏𝑖 and imposes as value of the corresponding variables 𝑏𝑖/𝑛𝑖 ,
where 𝑛𝑖 is the number of variables appearing in the 𝑖-th system equation. Fixing the value of these
unknowns corresponds to set some additional rows to the Amatrix. The procedure is repeated until
the sum of the 𝑛𝑖 fixed variables reaches the value of 𝑙 . The algorithm reduces the underdetermined
problem to a linear system with exactly one solution, which can be solved using the standard
method used to resolve the sparse linear system of equation (4).
We remark that this algorithm will select one of the possible solutions for solving the linear

system, but we cannot be sure that this is the actual distribution of the number of packets per flow.
However, we will show in the evaluation section that the average absolute error

𝐴𝐴𝐸 =
1
𝑛

∑︁
𝑖

|𝑥𝑖 − 𝑥𝑖 |

and the average relative error

𝐴𝑅𝐸 =
1
𝑛

∑︁
𝑖

|𝑥𝑖 − 𝑥𝑖 |
𝑥𝑖
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Algorithm 6 Algorithm for the selection of the free variables
1: Sort the vector b in ascending order
2: for Each 𝑏𝑖 do
3: Get the variables 𝑥𝑎, ..𝑥𝑏 corresponding to row 𝑖 of the matrix A that differs from 0
4: set the values of 𝑥𝑎, ..𝑥𝑏 to 𝑏𝑖/𝑛𝑖
5: set 𝑙 = 𝑙 − 𝑛𝑖
6: if 𝑙 == 0 then
7: break the loop
8: end if
9: end for
10: Solve the Ax = b system with the additional equations given by row 4.

obtained using this algorithm are better than the AAE and ARE obtained both using the least square
method proposed by PR-sketch and the standard CMS algorithm (that for the variables 𝑥𝑖 takes the
minimum among the buckets addressed by 𝑓𝑖 ).

4 P4 IMPLEMENTATION

Table 3. Resource footprint imposed by FlowLiDAR in Tofino 2. These num-
bers are based on a 4x128K BF, and 64 5x1K 16-bit CM sketches

Version Pipeline SRAM sALU TCAM Hash
Stages Bit

FlowLiDAR 2 5.1% 11.3% 0.3% 2.7%
Lazy FlowLiDAR 3 5.4% 11.3% 0.3% 3.1%

We implemented FlowLi-
DAR in 500 lines of 𝑃416
code8 for Tofino 2, using
the Barefoot SDE 9.7[1].
The results are obtained us-
ing a 4x128K BF, with 64
count-min sketches each
containing 5 rows of 1K 16-
bit counters. The resource
costs, as shown in Table 3, are relatively modest and leave plenty of room for any co-located
functionality at the programmable switch.
We notice that our prototype uses a non-negligible quantity of Stateful ALUs, though. This is

because an efficient implementation without recirculation necessitates a dedicated stateful ALU for
each of the 9 hash functions used for the combined BF and CMS dimensions. Here, the indexing in
the BF and CMS and the selection of which sketch to apply are all based on the switch-native CRC
engine, using custom polynomials that are statically configured at compile-time for a high level of
independence between the hash functions.

Finally, it is worth noting that the lazy version of FlowLiDAR requires more stages (+3 compared
to +2 stages). This is due to the introduction of a strict dependency between the BF-bits, which
forces the compiler to stretch the BF across several hardware stages.

5 EVALUATION
To evaluate the proposed FlowLiDAR, a software simulator has been developed. The simulator
reproduces the behavior of the P4 implementation while providing more flexibility in terms of
the number of used hashes and sizing of data structures, thus providing better insights into the
behavior of our system. The code has then been used to monitor the flows in three CAIDA traces
using our FlowLiDAR with different configuration parameters. In particular, we consider three
different traces taken from the 2016 dataset [8]: (C1) 21/01/2016 Minute 13:00, (C2) 18/02/2016
Minute 13:30, and (C3) 17/03/2016 Minute 14:00. The characteristics of the three CAIDA traces are
8The P4 source code and the simulator are available at this link: https://github.com/FlowLidar/FlowLidar.
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reported in Table 4. Before proceeding to discuss the results, it is important to note that the relative
performance of the different sketches will be similar when the link speeds increase from the 10G of
the CAIDA traces to faster links such as those currently used in modern data centers.

Table 4. Characteristics of the CAIDA traces used in the evaluation

short name duration # of pkts # of flows average bit rate average packet size

C1 60 sec 31M 905K 2.1 Gbps 509B

C2 58 sec 31M 781K 3.1 Gbps 722B

C3 60 sec 34M 579K 4.1 Gbps 898B

In the first experiment, we use one second epochs for measurements and a BF with four arrays
of 128K bits and a CMS with 64 arrays of 1K counters of 16 bits. The use of the basic scheme and
the lazy update are evaluated and the results are shown in Figures 5-12.
The plots report the percentage of flows with exact results per epoch, the percentage of flows

not detected due to FPs, and the bandwidth to the control plane. It can be noticed that FlowLiDAR
with the standard BF is able to exactly (with no error) estimate more than 80% of flows. We do not
report plots for sake of space but our experiments show that for 95% of flows the error is less or
equal to 1. Consequently, the average absolute and relative error of FlowLiDAR are well below
those of the traditional CMS evaluation (see Figures 7-8). The fraction of flows with an error greater
than one are due to the pollution caused by the untracked flows (Figure 6), which are the flows
not detected due to a false positive in the BFs. The plots also show that the use of the lazy update
greatly reduces the number of false positives (Fig, 6). This improves both the fraction of flows with
zero error, which approaches 100%, and the average absolute and relative errors (Fig, 7-8).

The drawback of the use of lazy updates is the additional required bandwidth, which grows from
60K flowIDs per epoch of the standard BF to 130K flowIDs per epoch (Fig, 12).

5.1 Benefit of lazy update BF
As the lazy updates have additional margin we run the same experiment but reducing the CMS to
half, using 32 arrays of 1K counters of 16 bits. The lazy update with 32x1K and 64x1K CMSs are
compared and the results are shown in Figures 9-10. In this case the experiment proves that the use
of lazy update enables decreasing the size of the CMS without affecting the quality of the results.
In fact, also with the 32x1K CMS it is possible to achieve around 100% of the exact results.

In the second experiment, we explore the parameters of our design of the lazy update. So we run
the same experiment changing the value of the BF and CMS parameters. In particular, we selected
three configurations (4x128K,6x64K,8x32K) for the lazy update BF and two configurations (32x1024,
64x512) for the CMS. The parameters are chosen to get insight on the compromise between the
bandwidth required by the lazy BF and the memory saving on the lazy BF due to the fewer number
of bits set to 1 in the lazy BF for the flows with less than 𝑘 packets. Table 5 reports the false
positive rate (FP) and the required bandwidth (BW) for the three lazy BF configurations, the average
absolute error (AAE) and the average relative error (ARE) both for the 32x1024 and 64x512 CMS
configurations. The results show that the lazy update is able to save 25% of memory (from the
512Kbits of the 4x128K to 384Kbits of the 6x64K) with a negligible penalty for the false positive
rate, a 20%-25% of BW overhead and a better value of the AAE and ARE both for the 32 and the 64
CMS configurations. With the 8x32K BF we achieve a saving of 50% with a BW overhead between
25%-35% and a slightly worse AAE.
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5.2 Bandwidth and epoch period resolution
One of the possible issues of the FlowLiDAR approach is the need to send to the controller a
significant amount of data. In particular, for each epoch it is necessary to send to the controller: (i)
all the active flows detected by the BF and, (ii) the snapshot of the CMS stored in the dataplane.
Furthermore, if advanced strategies based on the Lazy updates BF or on the BFs pair for differential
flow detection are used, also (iii) the snapshot of the BFs must be sent to the controller. Even if
the mechanisms to forward these data to the controller can be different, we can suppose that they
use the same communication channel such as for example a PCIe connection between the switch
and the CPU controller. It is thus important to understand how much bandwidth is required and
how the use of different epoch lengths affects this bandwidth. It is obvious that a smaller epoch
period will provide a better resolution of the network snapshot and thus should be preferable. On
the other side, the BW will be directly proportional to the number of epochs in a second, thus at
a first look, a too short epoch period could saturate the available bandwidth. However, it is also
worth to notice that in a shorter period there will be fewer active flows, thus less pressure to the
communication channel. Moreover, a smaller amount of flows also permits to reduce the size of
both the BF and the CMS, thus allowing to significantly reduce the overall amount of data to send
to the controller.

We performed a set of experiments on the three CAIDA traces to gather insight on the relationship
between bandwidth and epoch period. In particular, we selected 10 epoch periods, distributed with
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Table 5. Analysis of lazy update benefit

metric 𝑘 C1 trace C2 trace C3 trace

FP
4 0.0563% 0.0473% 0.0052%
6 0.0300% 0.0250% 0.0013%
8 0.1739% 0.1438% 0.0029%

BW (# of flows)
4 130K 129K 72K
6 154K 151K 88K
8 163K 160K 97K

AAE (32x1K CMS)
4 0.0194 0.0137 0.00043
6 0.0031 0.0021 0.00006
8 0.0202 0.0128 0.00013

AAE (64x512 CMS)
4 0.0176 0.0127 0.00039
6 0.0030 0.0020 0.00006
8 0.0186 0.0121 0.00014

ARE (32x1K CMS)
4 0.0052 0.0037 0.00009
6 0.0008 0.0005 0.00002
8 0.0060 0.0039 0.00003

ARE (64x512 CMS)
4 0.0047 0.0035 0.00008
6 0.0007 0.0005 0.00002
8 0.0057 0.0037 0.00003
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Fig. 14. Number of flows sent to the controller per
second as a function of the epoch period

a exponential scale between 1ms and 1 second (𝑖 .𝑒 with value 1ms, 2ms, 4ms, 8 ms .. 1024 ms). Also
the size of the BF was scaled in the same way, starting from a BF size of 1Kb and doubling the
size at each step. This choice allows a fixed contribution to the bandwidth that is of 1Mb/sec ≈
128KB/sec, which is fairly small. With the above configurations, the FP rate is around 2% for the
differential BF, less than 1% for the standard BF, and less than 0.05% for the lazy updates. Figure 13
shows the results in terms of FP rate for the three options taken into account.

The second contribution is due to the size of the CMS. If we target to achieve an exact solution,
the CMS load should be less than 0.97 when k=4, thus the number of counters in the CMS should
be slightly greater than the number of active flows. Considering a 2B counter, in the best case in
which we almost fill the CMS up to 97%, the required bandwidth is directly proportional to the
number of flows sent to the controller. The third contribution is simply the number of active flows
that are sent to the controller.

In Figure 14 we reported the amount of flows sent to the controller. It is possible to see that, as
expected the number of flows sent per second decreases for higher epoch periods, but also if we
want to run FlowLiDAR at a high resolution of 1 ms, the amount of data to send to the controller is
still manageable. From the above data, we can estimate the overall required bandwidth as follows.
If we suppose that the FlowID is 16B, such as the standard 5-tuple of 104 bits plus some additional
information, and considering the 2B for each CMS counter, we can estimate the overall bandwidth
for the controller with the standard BF as 𝐶𝐵𝑊 = 128𝐾𝐵 + (16 + 2) · 𝑛𝑓 . For the lazy updates BF
the actual number of flowIDs sent to the controller is �̂�𝑓 > 𝑛𝑓 , while the number of counters
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in the CMS is reduced, since the lazy updates avoid the insertion in the CMS of the flows with
less than 4 packets. The data reported in Figure 14 shows a �̂�𝑓 ≈ 1.5 · 𝑛𝑓 . Furthermore, we can
estimate a 50% reduction in the CMS size and thus the BW for the lazy updates can be computed as
𝐶𝐵𝑊 = 128𝐾𝐵+ (24+1) ·𝑛𝑓 . For the case of the differential flow detection we can reduce the amount
of flows sent to the controller of around 25%, corresponding to a BW of𝐶𝐵𝑊 = 128𝐾𝐵 + (12+ 2) ·𝑛𝑓 .
The above-presented evaluation shows that the FlowLiDAR system requires a bandwidth of

6.4MB/sec (3.6 MB/sec) in the worst case of 1 ms resolution with lazy updates (differential BFs)
and 1.5MB/sec (0.94 MB/sec) in the case of 1 second resolution. Supposing that the connection
between the control plane and the data plane is provided by a PCIe interface, also the worst case of
6.4MB/sec is fully sustainable using only a fraction of the available PCIe bandwidth. Even if we
consider a 20X speedup to mimic the behavior of a 100 Gbps link, as done as an example in [19],
the worst case requires only around 1 Gbps of PCIe throughput. Applying the same speedup, in
Figure 13 and Figure 14 the x-axis should be scaled by 20x to estimate the FPR and bandwidth for a
fully used 100 Gbps link.

5.3 Comparison with other solutions
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Fig. 15. Comparison between FlowLiDAR (FL), NZE,
PR-Sketch (PR), and ElasticSketch (ES)

We compared our solutionwith FlowRadar [34],
the NZE sketch [23], the PR sketch [49] and the
ElasticSketch [54]. If FlowRadar has sufficient
memory, it is able to provide an exact result for
almost all the monitored flows. Instead, with in-
sufficient memory, the IBLT decoding process
fails, no FlowIDs can be recovered, and thus
no flow estimation can be done. Therefore, for
the comparison between FlowRadar and FlowL-
iDAR, we estimated the minimum amount of
memory needed to achieve 99% of exact results.
Instead, for NZE, PR-sketch, and ElasticSketch,
we fixed the same amount of memory and eval-
uated different metrics, namely the required
bandwidth, AAE, ARE, and percentage of flows
with no error. For FlowLiDAR, we used a lazy
BF of (4x128 Kbits) and (32x1Kx16bits) CMSs,
with an overall memory of 128 KB. For NZE we
used the code of the NZE repository allocating
for the BF in the NZE sketch the same size as
our lazy BF, and the amount of memory used
by our CMS corresponds to the sum of the CMS
and hash tables used in the NZE sketch. In detail, we allocate 32KB to the NZE CMS and 32KB to
the hash table. For the PR-sketch the configuration is similar to FlowLiDAR: 64KB for the BF and
32Kx16bits for the CMS.
We remark that the sizing of the lazy BF of FlowLidar and of the BF of NZE and PR-sketch is

related to the number of undetected flows, i.e. flows that are not monitored by the system. In order
to monitor more than 99% of flows, for a trace with around 60K flows, we need at least 64KB of
memory for the standard BF used in PR-sketch (see equation (1)).
This corresponds to a ratio between BF and CMS different from the one used in the original

PR-sketch paper. Using the default ratio of 12.5% leads to a ratio of undetected flows of around 20%.
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For ElasticSketch, we allocated 25% of memory to the heavy part (32KB) and 75% of memory to
the light part (96KB), following the configuration proposed in [54]. Note that since the original
paper of ElasticSketch does not mention the case in which all the monitored FlowIDs are sent to
the controller at the end of the measurement epoch, we do not report its BW usage. Following the
configuration of [34], FlowRadar requires around 1.4 MB to correctly decode traces C1 and C2, and
around 800 KB for trace C3. Thus FlowLiDAR provides a memory saving between 6x and 10x with
respect to FlowRadar.

In Figure 15, we show the comparison with NZE, PR-sketch, and ElasticSketch for one trace with
an epoch time of 1 second. However, the results are similar for other traces and configurations and
consistently show that our solution provides better results at the expense of a slight increase in
the number of flowIDs sent to the control plane. In particular, we have much better results both in
terms of ARE and AEE and in terms of flows with no error9. This is mainly due to two reasons:
first of all, in FlowLiDAR, small flows are directly counted by the control plane and do not use
the CMS counters; second, we also avoid the use of a hash table in the dataplane, which permits
doubling the size of the CMS. Both improve the possibility of extracting the exact results using the
resolution method described in section 3.4.
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Fig. 16. Comparing FlowLiDAR and PR-sketch in terms of error-
free flows at different allocated memory sizes

Finally, since the PR-sketch is con-
ceptually close to FlowLiDAR, we
conducted an additional compari-
son on memory efficiency presented
in Figure 16. The fraction of flows
tracked without any estimation er-
rors was recorded (data refers to the
C1 trace) when varying amounts of
memory was allocated for filtering
and sketching. The PR-sketch does in-
deed achieve higher error-free rates
as more memory is allocated, but at
a much lower rate than FlowLiDAR.
As an example, to achieve a target error-free rate of 90%, PR-sketch would require 8x as much
memory as FlowLiDAR. This clearly shows the benefits of the innovations introduced by our design.
The better performances of FlowLiDAR over PR-sketch are mainly due to the use of lazy filtering,
which reduces the number of monitored flows, thus increasing the memory size range in which
the exact resolution can be used. However, even in the case of an underdetermined system the use
of an ad-hoc approximate resolution provides better results than the least square method used in
PR-sketch, as discussed in the next subsection.

5.4 FlowLiDAR approximate resolution
As mentioned in section 3.4.3, when the number of flows is higher than the number of CMS
rows, the system is underdetermined, and there are multiple possible solutions. We performed
a set of experiments reducing the size of the CMS to understand the quality of the approximate
solution provided by Algorithm 6. In particular, we used the lazy update BF with 𝑘 = 4 and reduced
the overall memory of the CMS from the value of 512 Kbits (the 32x1K configuration discussed
in section 5.1), which is able to provide the exact resolution, down to 32Kbits of a 32x64 CMS

9Note that the performance characteristics of PR-sketch, as well as FlowLiDAR, depends on the overall configuration of the
data structure (e.g., the ratio of memory used for filtering vs sketching). Here, we chose the ratio to be the same in both
systems to provide a fair comparison.
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configuration. The collected data proves that even with a very small amount of memory, it is
possible to have a good estimation of the flow size. We compared our results with the ones achieved
using the least square method proposed in PR-sketch10 and with the estimated values obtained
using the standard CMS estimation based on the minimum value. We remark that the use of the
least square method simply picks one of the possible solutions (all of them have the 𝐿2-norm equal
to zero), thus it does not give any guarantee on the actual error between the proposed solution
and the actual values. Instead, our algorithm selects the free variables of the system to fix among
the smallest ones, thus minimizing the error between the free variables and the actual values. In
Table 6 are reported the achieved percentage of exact values of the different configurations, the
AAE and ARE of the FlowLiDAR approximate resolution compared both with the results achieved
with the least square method and those obtained using the standard CMS estimation based.

Table 6. Performance of FlowLiDAR approximate CMS resolution

size #exact #exact AAE AAE AAE ARE ARE ARE
(bits) lstsq lstsq std lstsq std

32x1K (exact) 512K 99.0% 99.0% 0.019 0.019 3.468 0.0052 0.0052 1.97
32x512 256K 65.0% 60.8% 5.11 5.75 12.9 0.58 1.17 7.57
32x256 128K 63.3% 58.8% 9.11 18.0 42.6 1.32 3.68 24.31
32x128 64K 63.2% 58.8% 21.93 50.4 121 3.94 10.3 68.54
32x64 32K 63.1% 58.8% 45.41 129.9 315 8.57 26.5 177

The table shows that the approximate resolution is still able to provide more than 60% of exact
results. These values are mostly due to the use of the lazy update BF that counts the number
of packets in the flow based on the number of occurrences of the FlowID sent to the control
plane. The main benefit of the approximate resolution appears on the obtained AAE and ARE
values, which are significantly smaller than the ones achievable using the standard evaluation of
the CMS. In particular, when the memory available for the CMS is very small, the approximate
resolution provides a much better estimation than the standard one. For example, comparing the
32x64 configuration that requires 32Kbits, it has around a 3x better AAE and ARE with respect the
least square method used in PR-sketch, a 7x better AAE and a 20x better ARE with respect to the
one achievable using the traditional CMS.

5.5 Processing time for equation solver
Another aspect of the FlowLiDAR implementation to take into account is the processing time
needed for CMS equation solving. It is well known that the processing time grows more than
quadratically [9] and thus it is important to reduce the size of the CMSs used by FlowLiDAR. On
the other hand, the use of smaller CMSs has a slightly negative impact on the probability to exactly
solve the CMS equation. In more detail, since a single hash function is used to select the CMS for a
given flow, the load factor of each CMS will vary. Therefore some CMSs will be overloaded, and if
they go over the resolution threshold the exact CMS resolution will fail. We remark that this is not
a dramatic event, since in case of failure FlowLiDAR uses as fallback the estimation of size based
on the minimum. To better investigate this aspect, we first perform a set of experiments on an 8
cores, 16 threads Intel i7-10700K CPU clocked at 3.80 GHz to evaluate the processing time of a
CMS exact resolution using a single core, varying the number of rows of the system equation. The
results are presented in Table 7.
10We can see this as an improved PR-sketch since it first exploits the benefit of the lazy update mechanism and after uses
the least square method.
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Table 7. Processing Time for Exact CMS resolution

CMS size 256 512 1K 2K 4K
Processing time (ms) 0.6 2.8 15 100 680

From Table 7 we can
identify a CMS size that
allows a line rate decod-
ing using the parameters
selected in the previous sec-
tion. In particular, for the shortest epoch period of 1 ms, 2 CMS of 256 elements are sufficient to
store the active flows in one epoch (that are less than 300 in the three CAIDA traces used in the
simulations), and can also be decoded in a time interval less than the epoch period using 2 CPU
threads. For longer periods the scenario is less challenging, since we can exploit multiple cores to
perform the exact resolution of different CMS equations in parallel. Furthermore, a greater epoch
period permits to increase the size of the single CMS. For example, for the 1 second resolution it is
possible to deploy 64 CMS of 1K, which can be solved by a single thread in around 960 ms.

6 RELATEDWORK
The use of modern switches’ programmability to implement flow monitoring has been widely
studied both only to identify heavy hitters (see e.g. [5, 40, 55]) or all the flows. This last case is
the one we target with our FlowLiDAR scheme. Our scheme, different from existing solutions
such as FlowRadar [34], TurboFlow [50], FlowMap [53] or Hashflow [59], does not require storing
the flow identifiers in the dataplane memory. Instead, FlowLiDAR sends to the control plane the
FlowID of each active flow drastically reducing the amount of memory needed and thus making
it possible to monitor a much larger number of flows. The idea of sending the FlowIDs to the
control plane was also exploited in the NZE sketch [23] and in the PR-sketch [49]. The NZE sketch
splits the traffic in two subsets: the elephants are directly stored in a hash table that provides a
key-value map where FlowID and packet counts are stored, while for the mice the FlowID is stored
in the control plane and the packet count is based on the use of a sketch structure. However, the
NZE sketch requires a careful sizing to split the available memory between the hash table and
the sketch and is very sensitive to the FlowID size since larger sizes reduce the number of keys
that can be stored in the hash table. The PR-sketch instead sends all FlowIDs to the control plane
making its dataplane memory usage independent of the FlowID size. However, it requires a much
larger number of counters in the CMS and a larger filter than FlowLiDAR needing thus much more
dataplane memory.

FlowRadar [34] uses a Bloom filter to detect new flows and stores the flow identifiers and counters
on an Invertible Bloom Lookup Table (IBLT) [45]. The content of the IBLT is periodically sent to
the controller that inverts the table to extract the flows. FlowRadar requires additional memory to
ensure that the IBLT can be inverted (around 20%) and also to achieve a low false positive rate on
the Bloom filter. Also in FlowRadar, the required memory depends on the flowID size. In terms of
accuracy, when the number of flows is below the limit for the IBLT to be invertible, most flows are
identified with no errors, while if the number of flows is above the threshold the IBLT completely
fails in retrieving the <flowID, counter> tuples. Instead, our FlowLiDAR can rely on the approximate
resolution when the number of flows exceeds the threshold.
FlowMap [53] introduces some modifications to FlowRadar by replacing the IBLT with an

independent hash table that stores only the flow identifiers and a separate two-level hash structure
that stores the counters. The extraction in FlowMap is implemented as a linear programming
problem that reduces the memory overhead compared to that of an IBLT but is more expensive
computationally. To alleviate this issue, the counters are divided in groups by the two-level hashing.
This enables solving smaller linear programming problems, which makes the extraction process
faster. FlowLiDAR uses a similar approach to split the CMS equations solving.
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TurboFlow [50] and HashFlow [59] use hash tables to store the flow identifiers and the associated
counters. TurboFlow handles collisions on the hash table by evicting the flows to the controller.
HashFlow instead uses two tables such that on a collision on the first table elements are placed on
the second, and collisions on the second cause the flow with fewer packets on the second table to
be discarded. The observation that network traffic is heavily skewed and many flows have small
values is also exploited in Panakos [57], where a mix of bitmap, Count-Min, and SpaceSaving data
structures is used. Our choice is to allocate to the control plane the tail of the flow size distribution,
reserving data plane memory only for flow with a certain number of packets. Finally, a solution
able to provide exact counting in a distributed monitoring system is presented in [11].

7 CONCLUSIONS
In this paper, we have presented FlowLiDAR a scheme to scale switch in data plane flow monitoring
to millions of flows while providing flow size estimates that are exact with high probability.
FlowLiDAR uses a Bloom filter to identify new flows and a sketch to estimate their size and
introduces several innovations. The first one is not storing the FlowIDs in the data plane but
sending them to the controller, so reducing the data plane memory needed. Additionally, the
sketch to provide estimates is solved as a linear programming problem to improve accuracy and
finally a lazy update mechanism is used in the Bloom filter that reduces the false positives and
the number of flows stored in the sketch. These techniques are efficiently combined to drastically
reduce the amount of data plane memory while achieving excellent accuracy. FlowLiDAR has been
implemented and compared with state of the art alternatives. The results show that FlowLiDAR
requires at least 6x less memory than FlowRadar. Compared with NZE, the PR-sketch and the
Elastic Sketch configured with the same amount of memory, FlowLiDAR improves the AAE and
ARE by up to 10x, 100x and 100x, respectively. Moreover, while FlowLiDAR is able to successfully
track 98.7% of existing flows, other techniques can only reconstruct up to 60% of them.

8 ACKNOWLEDGEMENTS
We thank our shepherd, Arpit Gupta, and the anonymous reviewers, for valuable comments and
feedback. The work of Pedro Reviriego was partly done while he was at Universidad Carlos
III de Madrid and was supported by the FUN4DATE project, PID2022-136684OB-C22, and the
ENTRUDIT project TED2021-130118B-I00, funded by the Spanish Agencia Estatal de Investigación
(AEI) 10.13039/501100011033 and by the European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 101016663 (B5G-OPEN).
The work of Gianni Antichi was partially supported by the UK EPSRC project EP/T007206/1

and by the European Union under the Italian National Recovery and Resilience Plan (NRRP) of
NextGenerationEU, partnership on “Telecommunications of the Future” (PE00000001 - program
“RESTART”)

REFERENCES
[1] Anurag Agrawal and Changhoon Kim. 2020. Intel tofino2–a 12.9 tbps p4-programmable ethernet switch. In 2020 IEEE

Hot Chips 32 Symposium (HCS). IEEE Computer Society, 1–32.
[2] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan Vaidyanathan, Kevin Chu, Andy Fingerhut,

Vinh The Lam, Francis Matus, Rong Pan, Navindra Yadav, and George Varghese. 2014. CONGA: Distributed Congestion-
Aware Load Balancing for Datacenters. In Proceedings of the ACM Conference on Special Interest Group on Data
Communication (SIGCOMM). ACM.

[3] Gianni Antichi and Gábor Rétvári. 2020. Full-Stack SDN: The Next Big Challenge?. In Symposium on SDN Research
(SOSR). ACM.

[4] Sachin Ashok, P. Brighten Godfrey, and Radhika Mittal. 2021. Leveraging Service Meshes as a New Network Layer. In
Workshop on Hot Topics in Networks (HotNets). ACM.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 044. Publication date: December 2023.



044:22

[5] Ran Ben Basat, Xiaoqi Chen, Gil Einziger, and Ori Rottenstreich. 2020. Designing heavy-hitter detection algorithms
for programmable switches. IEEE/ACM Transactions on Networking 28, 3 (2020), 1172–1185.

[6] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang Li, Gianni Antichi, Minian Yu, and Michael Mitzenmacher.
2020. PINT: Probabilistic In-band Network Telemetry. In Proceedings of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication.
662–680.

[7] Giuseppe Bianchi, Elisa Boschi, Simone Teofili, and Brian Trammell. 2010. Measurement data reduction through
variation rate metering. In 2010 Proceedings IEEE INFOCOM. IEEE, 1–9.

[8] Caida. 2016. The CAIDA UCSD Anonymized Internet Traces. http://www.caida.org/data/passive/passive_2016_
dataset.xml.

[9] Timothy A Davis, Sivasankaran Rajamanickam, and Wissam M Sid-Lakhdar. 2016. A survey of direct methods for
sparse linear systems. Acta Numerica 25 (2016), 383–566.

[10] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin,
Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available
Key-Value Store. In Proceedings of the ACM SIGOPS Symposium on Operating Systems Principles (SOSP). Association for
Computing Machinery.

[11] Vitalii Demianiuk, Sergey Gorinsky, Sergey I Nikolenko, and Kirill Kogan. 2020. Robust distributed monitoring of
traffic flows. IEEE/ACM Transactions on Networking 29, 1 (2020), 275–288.

[12] Martin Dietzfelbinger, Andreas Goerdt, Michael Mitzenmacher, Andrea Montanari, Rasmus Pagh, and Michael Rink.
2010. Tight Thresholds for Cuckoo Hashing via XORSAT. In Proc. 37th ICALP (1). 213–225. https://doi.org/10.1007/978-
3-642-14165-2_19

[13] Olivier Dubois and Jacques Mandler. 2002. The 3-XORSAT Threshold. In Proc. 43rd FOCS. 769–778. https://doi.org/10.
1109/SFCS.2002.1182002

[14] Cristian Estan and George Varghese. 2002. New Directions in Traffic Measurement and Accounting. In Proceedings of
the ACM Conference on Special Interest Group on Data Communication (SIGCOMM). ACM.

[15] Philippe Flajolet, Eric Fusy, Olivier Gandouet, and Frederic Meunier. 2007. HyperLogLog: the analysis of a near-optimal
cardinality estimation algorithm. In Conference on Analysis of Algorithms (AofA).

[16] Nikolaos Fountoulakis and Konstantinos Panagiotou. 2012. Sharp Load Thresholds for Cuckoo Hashing. Random
Struct. Algorithms 41, 3 (2012), 306–333. https://doi.org/10.1002/rsa.20426

[17] Jiaqi Gao, Nofel Yaseen, Robert MacDavid, Felipe Vieira Frujeri, Vincent Liu, Ricardo Bianchini, Ramaswamy Aditya,
Xiaohang Wang, Henry Lee, David Maltz, Minlan Yu, and Behnaz Arzani. 2020. Scouts: Improving the Diagnosis
Process Through Domain-Customized Incident Routing. In Proceedings of the ACM Conference on Special Interest Group
on Data Communication (SIGCOMM). ACM.

[18] Marco Genuzio, Giuseppe Ottaviano, and Sebastiano Vigna. 2016. Fast Scalable Construction of (Minimal Perfect Hash)
Functions. In Proc. 15th SEA. 339–352. https://doi.org/10.1007/978-3-319-38851-9_23

[19] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford, and Walter Willinger. 2018. Sonata:
Query-driven streaming network telemetry. In Proceedings of the ACM Conference on Special Interest Group on Data
Communication (SIGCOMM). 357–371.

[20] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W. Moore, Gianni Antichi, and Marcin
Wójcik. 2017. Re-Architecting Datacenter Networks and Stacks for Low Latency and High Performance. In Proceedings
of the ACM Conference on Special Interest Group on Data Communication (SIGCOMM). ACM.

[21] George Havas, Bohdan S. Majewski, Nicholas C. Wormald, and Zbigniew J. Czech. 1993. Graphs, Hypergraphs and
Hashing. In Proc. 19th WG. 153–165. https://doi.org/10.1007/3-540-57899-4_49

[22] J. Hill, M. Aloserij, and P. Grosso. 2018. Tracking Network Flows with P4. In IEEE/ACM Innovating the Network for
Data-Intensive Science (INDIS).

[23] Qun Huang, Siyuan Sheng, Xiang Chen, Yungang Bao, Rui Zhang, Yanwei Xu, and Gong Zhang. 2021. Toward
Nearly-Zero-Error Sketching via Compressive Sensing. In 18th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21). 1027–1044.

[24] Qun Huang, Haifeng Sun, Patrick PC Lee, Wei Bai, Feng Zhu, and Yungang Bao. 2020. Omnimon: Re-architecting
network telemetry with resource efficiency and full accuracy. In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer
communication. 404–421.

[25] Intel. 2021. Intel Deep Insight Network Analytics Software. https://www.intel.com/content/www/us/en/products/
network-io/programmable-ethernet-switch/network-analytics/deep-insight.html. Accessed: 2022-10-04.

[26] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion Stoica. 2017.
NetCache: Balancing Key-Value Stores with Fast In-Network Caching. In Symposium on Operating Systems Principles
(SOSP). ACM.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 044. Publication date: December 2023.

http://www.caida.org/data/passive/passive_2016_dataset.xml
http://www.caida.org/data/passive/passive_2016_dataset.xml
https://doi.org/10.1007/978-3-642-14165-2_19
https://doi.org/10.1007/978-3-642-14165-2_19
https://doi.org/10.1109/SFCS.2002.1182002
https://doi.org/10.1109/SFCS.2002.1182002
https://doi.org/10.1002/rsa.20426
https://doi.org/10.1007/978-3-319-38851-9_23
https://doi.org/10.1007/3-540-57899-4_49
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/network-analytics/deep-insight.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/network-analytics/deep-insight.html


Lightweight Acquisition and Ranging of Flows in the Data Plane 044:23

[27] Piotr Jurkiewicz, Grzegorz Rzym, and Piotr Boryło. 2021. Flow length and size distributions in campus Internet traffic.
Computer Communications 167 (2021), 15–30. https://doi.org/10.1016/j.comcom.2020.12.016

[28] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer Rexford. 2016. HULA: Scalable Load
Balancing Using Programmable Data Planes. In Symposium on SDN Research (SOSR). ACM.

[29] Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin Bas, Advait Dixit, and Lawrence J Wobker. 2015. In-band
network telemetry via programmable dataplanes. In Proceedings of the ACM Conference on Special Interest Group on
Data Communication (SIGCOMM).

[30] Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon Kim, Jeongkeun Lee, Vyas Sekar, and Srinivasan Seshan. 2020.
TEA: Enabling state-intensive network functions on programmable switches. In Proceedings of the Annual conference
of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols
for computer communication. 90–106.

[31] Abhishek Kumar, Minho Sung, Jun (Jim) Xu, and Jia Wang. 2004. Data Streaming Algorithms for Efficient and Accurate
Estimation of Flow Size Distribution. In Special Interest Group for the Computer Performance Evaluation (SIGMETRICS).
ACM.

[32] Jan Kučera, Ran Ben Basat, Mário Kuka, Gianni Antichi, Minlan Yu, and Michael Mitzenmacher. 2020. Detecting
Routing Loops in the Data Plane. In Conference on Emerging Networking EXperiments and Technologies (CoNEXT).
ACM.

[33] Gene Moo Lee, Huiya Liu, Young Yoon, and Yin Zhang. 2005. Improving sketch reconstruction accuracy using linear
least squares method. In Proceedings of the 5th ACM SIGCOMM conference on Internet Measurement. 24–24.

[34] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. FlowRadar: A Better NetFlow for Data Centers. In USENIX
NSDI.

[35] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. LossRadar: Fast Detection of Lost Packets in Data Center
Networks. In Conference on Emerging Networking EXperiments and Technologies (CoNEXT). ACM.

[36] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming Zhang, Frank Kelly,
Mohammad Alizadeh, and Minlan Yu. 2019. HPCC: High Precision Congestion Control. In Proceedings of the ACM
Conference on Special Interest Group on Data Communication (SIGCOMM). ACM.

[37] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir Braverman. 2016. One Sketch to Rule
Them All: Rethinking Network Flow Monitoring with UnivMon. In Proceedings of the ACM Conference on Special
Interest Group on Data Communication (SIGCOMM).

[38] Lailong Luo, Deke Guo, Richard T. B. Ma, Ori Rottenstreich, and Xueshan Luo. 2019. Optimizing Bloom Filter:
Challenges, Solutions, and Comparisons. IEEE Communications Surveys and Tutorials 21, 2 (2019), 1912–1949.

[39] Bruce M Maggs and Ramesh K Sitaraman. 2015. Algorithmic nuggets in content delivery. ACM SIGCOMM Computer
Communication Review 45, 3 (2015), 52–66.

[40] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Efficient computation of frequent and top-k elements
in data streams. In International conference on database theory. Springer, 398–412.

[41] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017. Silkroad: Making stateful layer-4 load
balancing fast and cheap using switching asics. In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication. 15–28.

[42] Michael Molloy. 2005. Cores in random hypergraphs and Boolean formulas. Random Struct. Algorithms 27, 1 (2005),
124–135. https://doi.org/10.1002/rsa.20061

[43] F. Pereira, N. Neves, and F. M. V. Ramos. 2017. Secure network monitoring using programmable data planes. In IEEE
Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN).

[44] Boris Pittel and Gregory B. Sorkin. 2016. The Satisfiability Threshold for 𝑘-XORSAT. Combinatorics, Probability &
Computing 25, 2 (2016), 236–268. https://doi.org/10.1017/S0963548315000097

[45] Salvatore Pontarelli, Pedro Reviriego, and Michael Mitzenmacher. 2014. Improving the Performance of Invertible
Bloom Lookup Tables. Inf. Process. Lett. 114, 4 (apr 2014), 185–191. https://doi.org/10.1016/j.ipl.2013.11.015

[46] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis, Changhoon Kim, Arvind Krishnamurthy,
Masoud Moshref, Dan Ports, and Peter Richtarik. 2021. Scaling Distributed Machine Learning with In-Network
Aggregation. In Symposium on Networked Systems Design and Implementation (NSDI). USENIX Association.

[47] Mariano Scazzariello, Tommaso Caiazzi, Hamid Ghasemirahni, Tom Barbette, Dejan Kostic, and Marco Chiesa. 2023. A
High-Speed Stateful Packet Processing Approach for Tbps Programmable Switches. In Networked Systems Design and
Implementation (NSDI). USENIX.

[48] Robert Schweller, Zhichun Li, Yan Chen, Yan Gao, Ashish Gupta, Yin Zhang, Peter A. Dinda, Ming-Yang Kao, and
Gokhan Memik. 2007. Reversible Sketches: Enabling Monitoring and Analysis over High-Speed Data Streams. In
Transactions on Networking, Volume: 15, Issue: 5. IEEE Press.

[49] Siyuan Sheng, Qun Huang, SaWang, and Yungang Bao. 2021. PR-Sketch: Monitoring per-Key Aggregation of Streaming
Data with Nearly Full Accuracy. Proc. VLDB Endow. 14, 10 (jun 2021), 1783–1796. https://doi.org/10.14778/3467861.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 044. Publication date: December 2023.

https://doi.org/10.1016/j.comcom.2020.12.016
https://doi.org/10.1002/rsa.20061
https://doi.org/10.1017/S0963548315000097
https://doi.org/10.1016/j.ipl.2013.11.015
https://doi.org/10.14778/3467861.3467868
https://doi.org/10.14778/3467861.3467868


044:24

3467868
[50] John Sonchack, Adam J Aviv, Eric Keller, and Jonathan M Smith. 2018. Turboflow: Information rich flow record

generation on commodity switches. In Proceedings of the Thirteenth EuroSys Conference. 1–16.
[51] Daniel Ting. 2018. Count-min: Optimal estimation and tight error bounds using empirical error distributions. In

Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2319–2328.
[52] Nguyen Van Tu, Jonghwan Hyun, and James Won-Ki Hong. 2017. Towards onos-based sdn monitoring using in-band

network telemetry. In 2017 19th Asia-Pacific Network Operations and Management Symposium (APNOMS). IEEE, 76–81.
[53] Xiong Wang, Hanyu Liu, Jun Zhang, Jing Ren, Sheng Wang, and Shizhong Xu. 2019. FlowMap: A Fine-Grained Flow

Measurement Approach for Data-Center Networks. In ICC 2019-2019 IEEE International Conference on Communications
(ICC). IEEE, 1–7.

[54] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao, Xiaoming Li, and Steve Uhlig. 2018.
Elastic sketch: Adaptive and fast network-wide measurements. In Proceedings of the ACM Conference on Special Interest
Group on Data Communication (SIGCOMM).

[55] Tong Yang, Haowei Zhang, Jinyang Li, Junzhi Gong, Steve Uhlig, Shigang Chen, and Xiaoming Li. 2019. HeavyKeeper:
an accurate algorithm for finding Top-𝑘 elephant flows. IEEE/ACM Transactions on Networking 27, 5 (2019), 1845–1858.

[56] Minlan Yu. 2019. Network telemetry: towards a top-down approach. ACM SIGCOMM Computer Communication Review
49, 1 (2019), 11–17.

[57] Fuheng Zhao, Punnal Ismail Khan, Divyakant Agrawal, Amr El Abbadi, Arpit Gupta, and Zaoxing Liu. 2023. Panakos:
Chasing the Tails for Multidimensional Data Streams. Proceedings of the VLDB Endowment 16, 6 (2023), 1291–1304.

[58] Qi Zhao, Abhishek Kumar, and Jun Xu. 2005. Joint Data Streaming and Sampling Techniques for Detection of Super
Sources and Destinations. In Conference on Internet Measurement (IMC). USENIX Association.

[59] Zongyi Zhao, Xingang Shi, Zhiliang Wang, Qing Li, Han Zhang, and Xia Yin. 2021. Efficient and Accurate Flow Record
Collection With HashFlow. IEEE Transactions on Parallel and Distributed Systems 33, 5 (2021), 1069–1083.

[60] Yu Zhou, Jun Bi, Tong Yang, Kai Gao, Jiamin Cao, Dai Zhang, Yangyang Wang, and Cheng Zhang. 2020. Hyper-
sight: Towards scalable, high-coverage, and dynamic network monitoring queries. IEEE Journal on Selected Areas in
Communications 38, 6 (2020), 1147–1160.

[61] Yu Zhou, Chen Sun, Hongqiang Harry Liu, Rui Miao, Shi Bai, Bo Li, Zhilong Zheng, Lingjun Zhu, Zhen Shen, Yongqing
Xi, et al. 2020. Flow event telemetry on programmable data plane. In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer
communication. 76–89.

[62] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul Mahajan, Dave Maltz, Lihua Yuan, Ming Zhang,
Ben Y Zhao, et al. 2015. Packet-level telemetry in large datacenter networks. In Proceedings of the ACM Conference on
Special Interest Group on Data Communication. 479–491.

Received August 2023; revised October 2023; accepted October 2023

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 044. Publication date: December 2023.

https://doi.org/10.14778/3467861.3467868
https://doi.org/10.14778/3467861.3467868

	Abstract
	1 Introduction
	2 Motivation
	2.1 Limits of the current solutions

	3 Lightweight Detection and Ranging with FlowLiDAR
	3.1 Overall Approach
	3.2 Flow Detector
	3.3 Packet Counting
	3.4 Postprocessing

	4 P4 Implementation
	5 Evaluation
	5.1 Benefit of lazy update BF
	5.2 Bandwidth and epoch period resolution
	5.3 Comparison with other solutions
	5.4 FlowLiDAR approximate resolution
	5.5 Processing time for equation solver

	6 Related work
	7 Conclusions
	8 Acknowledgements
	References

