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ABSTRACT
Bloom filters and cuckoo filters are used in many applications to
reduce the amount of memory needed to check if an element be-
longs to a set. The main drawback of these filters is that with low
probability, a positive is returned for an element that is not in the
set. Recently, the concept of Bloom filters with a false positive
free zone has been introduced showing that false positives can be
avoided when the universe from which elements are taken and the
number of elements inserted in the filter are both small. Unfortu-
nately, this limits the use of such false positive free Bloom filters
in many practical applications. In this paper, a false positive free,
i.e. perfect, cuckoo filter is presented and evaluated. The proposed
design supports universe sizes of billions of elements and stores
millions of elements, making it practical for a wide range of ap-
plications. The perfect cuckoo filter can be also used to perform
<key,value> mapping, further extending the range of scenarios in
which can be used. The benefits of the proposed perfect cuckoo
filter are illustrated with two case studies: IP address blacklisting
and longest prefix match for IP forwarding.

CCS CONCEPTS
• Theory of computation → Sorting and searching; • Net-
works→ Network algorithms.
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1 INTRODUCTION
Testing if an element belongs to a set is a common operation inmany
computing and networking applications such as checking if a given
source IP address is in a blacklist [4] or if a DNA sequence contains
a given pattern [12]. This checking can be implemented by storing
the full set in the memory and searching if the requested element

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CoNEXT ’21, December, 2021,
© 2021 Association for Computing Machinery.
ACM ISBN TBA. . . $TBA
https://doi.org/TBA

is among those stored. Unfortunately, when the set is large, the
amount of memory needed can be excessive such that for example
it does not fit into the cache and operations are slower. When that
is the case, an approximate rather than exact membership check
can be used to reduce the memory footprint and speed up the
checking. Bloom filters [11] and cuckoo filters [6] are widely used
to implement approximate membership checking and reduce the
amount of memory needed at the cost of introducing false positives
with low probability. The impact of these false positives depends
largely on the application. When the filter is used to detect if an
element is stored in an external table and only then access the table
[3, 11, 16], a false positive only incurs in an unneeded access to the
external table. Instead, if the filter is used to check if the source
IP address of a packet is in a blacklist to then block the packet, a
false positive for a given IP address would disable communication
from that IP address. This is an example in which Bloom filters
cannot be applied, since even a very small false positive probability
is not acceptable. However, in all cases it is beneficial to reduce the
false positives and if possible, eliminate them. Indeed, many efforts
have been made to reduce false positives by proposing new filter
structures such as the cuckoo filter [6] or by modifying the Bloom
filter [5, 10, 11, 15, 18, 21].

More recently, the concept of a Bloom filter with a False Positive
Free Zone (FPFZ) has been introduced [8]. These filters completely
eliminate false positives for a given universe size when the number
of elements inserted in the filter is below a given threshold, i. e.
the filter is inside its FPFZ. This is achieved by using mappings of
elements to bits in the filter that have special properties. For exam-
ple, mappings based on polynomials or error correction codes have
been proposed to provide a FPFZ [19]. Unfortunately, in all cases,
the FPFZ is small supporting only a few elements and the universe
is also small. This significantly limits the range of applications in
which they can be used.

Efforts have also been made to reduce the false positive rate of
cuckoo filters, for example by using adaptation to remove false
positives once they are detected [13]. However, to the best of our
knowledge, all existing cuckoo filter variants have a false positive
probability that is larger than zero. In this paper, we explore the
design of false positive free, i.e. perfect cuckoo filters and present
a scheme to implement them. The proposed scheme completely
eliminates false positives for a given universe size and, in some
configurations, requires a memory footprint that is similar to that
of traditional cuckoo filters. This makes the perfect cuckoo filters of
interest since they can be used in applications that cannot tolerate
false positives and also in all the applications in which minimizing
false positives is important. The main contributions of this paper
can be summarized as:
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• A novel data structure derived from the cuckoo filter, with
no false positives is proposed.

• The proposed structure, differently from existing Bloom fil-
ters with a false positive free zone, can support both large
universes and sets.

• We show that additionally, the new data structure provides
better results in terms of load factor with respect to standard
cuckoo filters when a small number of bits is used for the
fingerprint (see §3.3).

• We show how to extend the perfect cuckoo filter to provide
a compressed {key,value} mapping (§3.2).

• The benefits of the proposed data structure are shown in
two practical use cases: IP blacklisting and Longest Prefix
Match.

The rest of the paper is organized as follows. Section 2 covers
the preliminaries on Bloom filters with a FPFZ and cuckoo filters.
The proposed false positive free cuckoo filters are presented in
Section 3. Section 4 presents two case studies used to evaluate the
proposed scheme, validating that no false positives occur over the
entire universe, and comparing the memory footprint to that of
traditional solutions. Section 5 draws the conclusion and some ideas
for future work.

2 PRELIMINARIES
2.1 Bloom filters
A Bloom filter [2] maps elements to an array of𝑚 bits using 𝑘 hash
functions ℎ1 (𝑥), ℎ2 (𝑥), .., ℎ𝑘 (𝑥). To insert an element 𝑥 in the filter,
the 𝑘 bits on the positions given by those hash functions are set to
one. To check if an element has been inserted in the filter, those
same positions are checked and when all of them are set to one, a
positive is returned. Otherwise the result is a negative. Bloom filters,
by construction cannot have false negatives as if element 𝑥 has been
inserted on the filter, then bits on positions ℎ1 (𝑥), ℎ2 (𝑥), .., ℎ𝑘 (𝑥)
are one. Instead, false positives can occur as those positions may
be one when 𝑥 has not been inserted in the filter if other elements
inserted in the filter also map to them.

The false positive probability of a traditional Bloom filter de-
pends on the array size𝑚, the number of elements inserted in the
filter 𝑛, and the number of hash functions used 𝑘 . False positives
can be avoided by using mapping functions with special features
that ensure that a set of elements of size 𝑑 or less cannot create
false positives. These filters are denoted as Bloom filters with a
False Positive Free Zone (FPFZ) and several constructions have
been proposed to build such filters [8],[19]. In more detail, three
constructions based on prime numbers (EGH), polynomials (POL)
and orthogonal latin squares error correction codes (OLS) have
been presented.

The memory complexity and number of probes for lookups of
existing constructions to implement a FPFZ of size𝑑 over a universe
of size 𝑈 are summarized in Table 1 that also includes that of the
proposed perfect cuckoo filter (PCF). From the table, it becomes
apparent that existing filters are not practical when 𝑑 and 𝑈 are
large. As an example, let us consider a false positive free zone of size
𝑑 = 210 over a universe of size 𝑈 = 224. The required memory for
such setting for each of the constructions in table 1 would be 170Mb
for EGH, 4Mb for OLS and 500K bits for POL with 𝑡 = 3 respectively.
This corresponds to approximately 500 bits per element in the filter

Table 1:Memory andnumber of probes required by different
Bloom filters with a FPFZ of size 𝑑 over a universe of size
𝑈 . For the POL filter, 𝑡 is a controllable parameter that has
integer values larger than one. The proposed perfect cuckoo
filters (PCF) are included for completeness.

filter memory complexity # probes
EGH 𝑂 (𝑑2 · log𝑈 ) 𝑂 (𝑑 · log𝑈 )
OLS 𝑂 (𝑑 ·

√
𝑈 ) 𝑂 (𝑑)

POL 𝑂 (𝑡 · 𝑑 · 𝑡
√
𝑈 ) 𝑂 (𝑡 · 𝑑)

PCF 𝑂 (𝑑 · log𝑈 ) 2

in the best case. An exact membership check implementation using
for example cuckoo hash [14], would require approximately 24 bits
per element so the FPFZ filter requires more memory than an exact
representation. Therefore, it is of interest to find constructions of
data structures that can implement a FPFZ for large values of 𝑑 and
𝑈 using fewer bits per element than an exact representation. This
is indeed achieved by the proposed PCF that has a memory cost
that is linear on the set size and logarithmic on the universe size as
seen in table 1. The PCF needs also the lowest number of probes
for lookups making it faster than existing FPFZ Bloom filters.
2.2 Cuckoo filters
A cuckoo filter is an approximate membership check data structure
derived from cuckoo hashing [14]. In a cuckoo filter, a fingerprint
of the element 𝑓 𝑝 (𝑥) is computed using a hash function and stored
on a table. The fingerprint can be stored in two positions given
by addresses 𝑎1 = ℎ1 (𝑥) and 𝑎2 = ℎ1 (𝑥) 𝑥𝑜𝑟 ℎ2 (𝑓 𝑝 (𝑥)) where
ℎ1 (𝑥), ℎ2 (𝑥) are also hash functions. A position on the table can
store 𝑐 fingerprints and typically 𝑐 = 4 as shown in Figure 1. To
check if an element 𝑥 is stored in the filter, the two addresses are
computed and the fingerprints stored on them are compared to
𝑓 𝑝 (𝑥). A positive is returned if there is a match and a negative
otherwise. If the fingerprints have 𝑓 bits and the filter occupancy
is 𝑜 , false positive rate of the cuckoo filter can be approximated by
2·𝑐 ·𝑜
2𝑓 .

Figure 1: Illustration of a cuckoo filter with four cells per
bucket

To insert an element𝑥 in the filter, its two addresses are computed
and if there is an empty cell on any of them, 𝑓 𝑝 (𝑥) is stored in one
of the empty cells. Instead, when all cells in both addresses are
occupied, one of the stored fingerprints 𝑓 𝑝 (𝑦) is selected randomly
and moved to its alternate bucket and 𝑓 𝑝 (𝑥) is inserted on its place.
If when moving 𝑓 𝑝 (𝑦) its alternate address is also fully occupied,
one of the fingerprints stored there is selected and moved and the
process continues until an address with an empty cell is found.

To the best of our knowledge, no construction of a cuckoo filter
that avoids false positives has been presented so far. In the following
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section, a scheme to implement false positive free cuckoo filters is
presented.
3 PERFECT CUCKOO FILTERS
In this section, we first present the construction of the perfect
cuckoo filters, their application for <key,value> mapping and then
discuss the minimum fingerprint size that can be used in the pro-
posed filters and their use when some false positives are allowed.
3.1 Construction
Let us consider a universe of elements𝑈 with size 2𝑢 so that each
element in𝑈 can be represented with 𝑢 bits and a cuckoo filter of
2𝑏 buckets. For example, a cuckoo filter with 𝑏 = 16 and 64K buckets
each with 4 cells that can store up to 256K IPv4 addresses of 32 bits
so that 𝑢 = 32. Our goal is to design a cuckoo filter like structure
that has no false positives over the universe𝑈 .

A first observation is that there are some hash functions that
map 𝑈 to 𝑈 with no collisions. That is, ℎ() is bijective, so for any
𝑥 ≠ 𝑦 ∈ 𝑈 we will have ℎ(𝑥) ≠ ℎ(𝑦). In particular, CRCs of 𝑢 bits
based on primitive polynomials are bijective when the input has 𝑢
bits [20]. For example, a CRC32 maps the universe of 32-bit values
with no collisions. The same seems to apply to other hash functions
like murmurhash1[1]. Let us denote this function as𝑚(𝑥). Then a
data structure that stores𝑚(𝑥), will not have collisions on𝑈 .

A second observation is that since𝑚(𝑥) is a hash function, its
bits can be used to form smaller hash functions needed in a cuckoo
filter. In particular, on a cuckoo filter, a fingerprint 𝑓 𝑝 (𝑥) is stored
in one of two buckets with addresses 𝑎1 = ℎ1 (𝑥) and 𝑎2 = ℎ1 (𝑥) 𝑥𝑜𝑟
ℎ2 (𝑓 𝑝 (𝑥)). Therefore, hash functions ℎ1 (𝑥) and 𝑓 𝑝 (𝑥) are needed.

To build a false positive free cuckoo filter we can proceed as
follows:

(1) Assign ℎ1 (𝑥) to be the lower 𝑏 bits of𝑚(𝑥).
(2) Assign 𝑓 𝑝 (𝑥) to be the remaining 𝑢 − 𝑏 bits of𝑚(𝑥).
This generation of ℎ1 (𝑥), 𝑓 𝑝 (𝑥) from 𝑥 using𝑚(𝑥) is illustrated

in Figure 2.

Figure 2: Generation of the fingerprint 𝑓 𝑝 (𝑥) and the first
bucket address ℎ1 (𝑥) for element 𝑥 using a collision free
hash function𝑚(𝑥)

Then, an element inserted in its first bucket is given by {𝑓 𝑝 (𝑥), 𝑎1}
= {𝑓 𝑝 (𝑥), ℎ1 (𝑥)} =𝑚(𝑥). Let us consider the cases that can lead to
a false positive:

(1) Since𝑚(𝑥) ≠𝑚(𝑦) for all 𝑥,𝑦 in𝑈 , no false positives can be
created between elements inserted on their first bucket.

(2) Similarly, for the second bucket we have {𝑓 𝑝 (𝑥),𝑎2} = {𝑓 𝑝 (𝑥),
ℎ1 (𝑥) 𝑥𝑜𝑟 ℎ2 (𝑓 𝑝 (𝑥))} = 𝑚(𝑥) xor ℎ2 (𝑓 𝑝 (𝑥)). As 𝑚(𝑥) ≠ 𝑚(𝑦)
either 𝑓 𝑝 (𝑥) ≠ 𝑓 𝑝 (𝑦) or ℎ1 (𝑥) ≠ ℎ1 (𝑦) or both. A false positive can
only be created if 𝑓 𝑝 (𝑥) = 𝑓 𝑝 (𝑦). But if that is the case,𝑚(𝑥) xor
1We have tested this by running murmurhash3 on all possible 32-bit values with
different seeds.

ℎ2 (𝑓 𝑝 (𝑥)) and𝑚(𝑦) xor ℎ2 (𝑓 𝑝 (𝑦)) will be different as the second
term is the same and the first one is different. So again, no false
positives can be created between elements inserted on their second
bucket.

(3) The last possibility for a false positive would be that𝑚(𝑥) =
𝑚(𝑦) 𝑥𝑜𝑟 ℎ2 (𝑓 𝑝 (𝑦)), so that when looking for the first bucket we
get a false positive due to the insertion of an element on its second
bucket or the other way around. Again, a false positive can only be
created if 𝑓 𝑝 (𝑥) = 𝑓 𝑝 (𝑦) so that the lower bits of𝑚(𝑥),𝑚(𝑦) are
different. However, in this case if the difference is exactlyℎ2 (𝑓 𝑝 (𝑦)),
a false positive can occur.

Therefore, there is a case where FPs are still possible. To avoid
this, an additional bit 𝑠 is stored in the filter. That is, each cell stores
{𝑠 , 𝑓 𝑝 (𝑥)} and 𝑠 is set to zero if the element is stored in its 𝑎1
bucket and to one if it is stored on its 𝑎2 bucket. This means that
false positives are not possible as now in case 3) we would have
𝑠𝑥 ≠ 𝑠𝑦 . The proposed filter is illustrated in Figure 3.

Figure 3: Proposed Perfect Cuckoo Filter: a selector bit is
added to the entries tomark if the element is on its first (sec-
ond) bucket with 0 (1). In the figure, a lookup for 𝑥 is shown.

From the previous analysis, it seems we can build false positive
free cuckoo filters when the universe𝑈 is not very large. For the
IPv4 example discussed, with a 128K buckets filter we would need
15+1 =16 bits for the cells to achieve a false positive free filter. This
seems attractive and more powerful than FPFZ-BFs. In particular it
enables us to filter IPv4 addresses with no false positives using only
16 bits. The speed of the proposed PCFs would be implementation
dependent but they require the same number of memory accesses
as a plain cuckoo filter.

Finally, it is interesting to note that since there can be at most two
elements that map to the same position with the same fingerprint,
the PCF does not seem to be vulnerable to adversarial inputs that
force an insertion failure by inserting more than eight elements
with the same fingerprint mapping to the same positions [17].
3.2 <key,value> mapping with PCFs
In standard cuckoo filters, each cell can correspond to multiple keys
sharing the same hash value and fingerprint. Thus it is not possible
to associate a value to the key, since several keys can collide in
the same position. Instead, in the perfect cuckoo filter, there is a
one-to-one mapping between the cell location and the key inserted
in the filter. Therefore, the cell location can be used as a pointer
to associate a value to each key stored in the filter. Given a set of
pairs {𝑥, 𝑣𝑥 }, it is sufficient to store in each cell the triple {𝑠 , 𝑓 𝑝 (𝑥),
𝑣𝑥 } instead of {𝑠 , 𝑓 𝑝 (𝑥)}. The query operation provides as answer
a not found value if the key 𝑥 is not in the filter, or the value 𝑣𝑥 if
the key is present. We exploit this additional feature of the perfect
cuckoo filter in the use case of longest prefix match presented in
Section 4.2.2.
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3.3 Minimum fingerprint size
A limitation of cuckoo filters is that the occupancy that can be
achieved degrades when the fingerprint size is small and tables
are large [6]. This is in part caused by having too many elements
with the same fingerprint mapping to a given bucket. Since the
second bucket is determined by the fingerprint, elements that map
to a bucket with the same fingerprint would also map to the same
alternative bucket and if there are more than eight2 such elements,
an insertion failure would occur [6].

Let us consider our perfect cuckoo filter when using only three
bits per fingerprint, a value for which the traditional cuckoo filter
suffers a large degradation in its maximum occupancy. Then, the fil-
ter would have 2𝑢−3 buckets and exactly eight elements would map
to each bucket with ℎ1 (𝑥) with fingerprints 000,001,010,011,100,101,
110,111. This means that there would be no conflict between the
fingerprints as all would have different values. Let us now con-
sider another element 𝑦 that maps to another bucket ℎ1 (𝑦) such
that ℎ1 (𝑥) = ℎ1 (𝑦) 𝑥𝑜𝑟 ℎ2 (𝑓 𝑝 (𝑦)) and 𝑓 𝑝 (𝑥) = 𝑓 𝑝 (𝑦). Then, that
element 𝑦 would be unique as it has to map to bucket ℎ1 (𝑥) 𝑥𝑜𝑟
ℎ2 (𝑓 𝑝 (𝑦)) and only one element in that bucket will have 𝑓 𝑝 (𝑦) =
𝑓 𝑝 (𝑥). Therefore, the proposed perfect cuckoo filters should not
suffer any degradation in the achievable occupancy when using
small fingerprints due to having the same fingerprint more than
eight times on a bucket. This is an interesting result that we have
checked by simulation (see Section 4.1) and that has practical im-
plications for one of the case studies presented in the evaluation
section (Section 4.2 with 𝑓 = 5).

3.4 Allowing false positives in the PCF
The proposed PCF can be used with fewer fingerprint bits than
needed to avoid false positives. Let us consider a PCF that uses
𝑓 − 𝑟 fingerprint bits instead of 𝑓 . Then for each element there are
2𝑟 −1 elements that can cause a false positive and thus the false pos-
itive probability would be approximately 4·𝑜 ·2𝑏 · (2𝑟−1)

2𝑢 =
4·𝑜 · (2𝑟−1)

2𝑓
where 𝑜 is the filter occupancy. This compares with the false posi-
tive probability when using non bijective hash functions that would
be approximately 4·𝑜

2𝑓 −𝑟 . When 𝑟 is large, both probabilities are the
almost the same but when 𝑟 is small, the use of bijective hash
functions reduces the false positive probability significantly. For ex-
ample, when 𝑟 = 1, the probability is only half that of the traditional
filter. Therefore, the proposed PCF can also reduce the false positive
probability when fewer than 𝑓 bits are used for the fingerptints.

This means that bijective hash functions can also be used to
implement filters with few fingerprint bits when the universe is
not large but we do not need to avoid false positives. However, this
is not explored further in this paper as our main objective is indeed
to completely avoid false positives.

4 EVALUATION
To evaluate the proposed perfect cuckoo filter a C++ simulator
has been developed.3. The hash function used is configurable and
can be selected to be CRC24, CRC32, MurMurHash3, CityHash or

2As each bucket has four cells, at most eight elements can be placed on a pair of
buckets.
3The source code is available in this link: https://github.com/pontarelli/perfectCF

XXHash4. When not differently stated, the experiments are per-
formed targeting the universe of 32-bit elements that corresponds
to the IPv4 address space. The implementation is first used to val-
idate that the proposed perfect cuckoo filter does not have false
positives. After, two case studies are used to illustrate the benefits
of the proposed filter: (i) the implementation of a blacklist of IPv4
addresses and (ii) a Longest Prefix Match algorithm. These case
studies illustrate the applicability and benefits of the proposed filter
in a real scenario.
4.1 Validation
The first part of the evaluation focuses on checking that our per-
fect cuckoo filter has no false positives when the hash function is
bijective. To that end, two bijective functions on the 32-bit universe
(CRC32 and MurMurHash3) were tested. Additionally, two hash
functions that are not bijective, CityHash and XXHash were also
tested. The proposed filter was constructed for different sizes and
filled to a 95% occupancy. Then the number of false positives over
the entire universe was measured. The experiment was run mul-
tiple times and in all cases the proposed perfect cuckoo filter did
not have any false positive when using a bijective hash function.
The number of false positives when using functions that are not
bijective were similar in all runs. The results are summarized in
Table 2 for one of the runs. The table also shows the theoretical
estimate for the number of false positives that is given by 4·𝑜

2𝑓 where
𝑜 is the filter occupancy (in our experiments 0.95) and 𝑓 the number
of fingerprint bits. It can be seen that when a bijective hash function
is used, our proposed scheme has no false positives. Instead, when
a hash function that is not bijective is used, there is a number of
false positives that matches well with the theoretical estimate. This
first experiment confirms that the proposed approach does indeed
avoid false positives. Furthermore, the experiment suggests that the
use of bijective hash functions does not affect the maximum load
factor achievable with cuckoo filters. The same experiment was re-
peated using 𝑓 − 𝑟 fingerprint bits and the false positive probability
matched that of the analysis in section 3.4. In a second experiment,
we tested the occupancy that the proposed perfect cuckoo filter can
achieve when using few fingerprint bits. In particular, a universe
of 𝑢 = 24 bits was considered with a filter with 𝑏 = 20 and 𝑓 = 4.

Table 2: Number of false positives over the 32-bit universe
for a perfect cuckoo filter with 2𝑏 buckets of four cells and
fingerprints of 𝑓 bits when using different hash functions

𝑏 𝑓 CRC32 MurMur XXHash CityHash Theoretical
Hash3

10 22 0 0 3936 3812 3891
12 20 0 0 15577 15543 15564
14 18 0 0 62436 62317 62259
16 16 0 0 248662 248852 249036
18 14 0 0 995500 996863 996147
20 12 0 0 3980877 3979894 3984588
22 10 0 0 15853006 15848709 15938355

The CRC24 hash function was used to build the filter and then
other not bijective hash functions were also tested. The filter is
4Further details on the hash functions are available at https://github.com/rurban/
smhasher

https://github.com/rurban/smhasher
https://github.com/rurban/smhasher
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constructed and elements are inserted until the first insertion fails.
The occupancy at that point is logged and the minimum value
across all the runs is reported. The results in terms of the worst
case occupancy that is achieved over one thousand trials are sum-
marized in Table 3. It can be seen that when the function is bijective
(CRC24), occupancy is above 95%, similar to that achieved with
larger fingerprints. Instead, for the functions that are not bijective
on the 24-bit universe, occupancy is much lower as previously ob-
served for cuckoo filters [6]. This confirms the analysis in section
3.3 and shows that perfect cuckoo filters can be constructed with
few fingerprint bits.

Table 3:Worst case occupancy achieved over 1,000 runs with
the 24-bit universe for cuckoo filters with 220 buckets of 4
cells and fingerprints of 4 bits when using different hash
functions

CRC24 MurMurHash3 XXHash CityHash
96.71% 46.15% 60.64% 56.32%

4.2 Case studies
The benefits of the PCF can be significant when the number of
bits needed to represent the universe is not much larger than the
number of hash bits needed to represent the buckets on the filter.
This is for example the case for most applications that use IPv4
so that the universe has 32 bits and the hash for the bucket may
have 10-20 bits. Instead, when the universe is much larger, as for
example in IPv6 with 128 bits, the benefits of the proposed PCFs are
much smaller. To illustrate the potential benefits of the proposed
scheme, its use in two applications is evaluated. The first one is the
blacklisting of IP addresses. The second is the implementation of
Longest Prefix Match for IPv4 for which cuckoo filters have been
proposed in the past [9].

4.2.1 IP Blacklist. In networks, it is common practice to identify
malicious host by their IP address and block any traffic coming from
those IP addresses [4],[23]. This requires checking every incoming
packet to see if its source IP address is in the blacklist. The number
of IP addresses in the list is potentially very large and thus the
blacklist may require a large amount of memory. Therefore, it would
be beneficial to use a filter to check if an element is in the blacklist
and only when the filter returns a positive check the full list. Note
that in this case, the check of the full list is needed to avoid false
positives from blocking legitimate IP addresses. Clearly, in this
application a filter that is false positive free would be beneficial as
it would remove the need to check the full list on a positive. In the
case of IPv4, addresses have 32 bits and thus the universe has a size
of 232 while the number of elements stored can be in the order of
hundreds of thousands.

To illustrate the benefits of using our perfect cuckoo filters, a
public spam blacklist with close to 200,000 IP addresses was used5.
The blacklist can be stored in a cuckoo hash table with 216 buckets
of four cells using the 32-bit IPv4 addresses as key. This would
require 216 · 4 · 32, so 1MB of memory. Instead, the proposed filter
requires only 216 · 4 · 17 that is 544K so approximately half the
memory.
5http://iplists.firehol.org/?ipset=stopforumspam_90d

4.2.2 Longest Prefix Match in IPv4. The second case study con-
siders the implementation of longest prefix match in IPv4 using a
binary search tree on prefix lengths [22]. In this application, the
proposed perfect cuckoo filters can significantly reduce the memory
needed. As an example, let us consider a tree with only three nodes
so that the number of prefix lengths checked per lookup is two
in the worst case and thus comparable to the well-know DIR-24-8
algorithm [7], which instead has a higher memory footprint6. The
root node is fixed at /24 and the right node at /32 while the left
node was selected to minimize the memory footprint and set to
/20. All the prefixes with other lengths are expanded to the closest
larger value. Let us summarize here the method proposed in [22],
applied to the specific example: The tree is populated as follows:

(1) all the prefixes less than /20 are expanded to /20 and inserted
in the /20 node.

(2) all the prefixes between /21 to /23 are expanded to /24 and
inserted in the /24 node.

(3) all the prefixes greater than /25 are expanded to /32. The
prefix is inserted in the /32 node and an additional marker
is inserted in the /24 node.

The tree lookup starts from the /24 root node. If the searched IP
matches a prefix, the search ends. If the searched IP matches a
marker, then it is possible that the IP matches also a prefix in the
/32 node, so the algorithm does a second lookup in the right leaf of
the tree. If there is no match in /24, a second lookup in the left leaf
of the tree is done. The tree requires in the worst case two node
accesses, thus providing a fast lookup. However, prefix expansion
can lead to a large number of entries and thus to a large memory
usage. In this design, using perfect cuckoo filters can significantly
reduce the memory needed. To better illustrate the benefits, let
us consider several Internet scale routing tables with close to one
million prefixes.7 Table 4 presents the number of prefixes on each
routing table and also the number of /24 prefixes that account for
the majority of the prefixes.

Table 4: Number of routing tables prefixes

Table /24 Total
AS20 351455 (58%) 602680
AS6447 529421 (58%) 910419

RIPE RRC00 504440 (58%) 864260

The number of prefixes after expansion for routing table AS6447
are shown in Table 5 as an example. It can be seen that setting
the length of the left node to /20 results in the lowest number of
prefixes. Similar results were obtained for the other tables. Selecting
/20, /24 and /32 as prefix lengths, for /20 we can use an array with
size 220. Instead, for /24, such an array would require 16 million
entries. Therefore, we can use a perfect cuckoo filter with 𝑏 = 19
and 𝑓 = 5. Similarly, for /32 we can use a PCF with 𝑏 = 17 and
𝑓 = 15.

6Note that the original algorithm in [22] uses much more nodes (one per prefix length)
but requires up to five prefix length checks, in our evaluation we restricted the tree to
three nodes to have a larger lookup throughput.
7The original FIB tables were taken from https://bgp.potaroo.net/and
http://data.ris.ripe.net/rrc00/ at different dates. The actual tables used for the
experiments are available at https://github.com/pontarelli/perfectCF.
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Table 5: Number of prefixes after expansion for the tree
nodes for the AS6447 table

Length Left Left Root (/24) Right (/32) Total
/16 34840 4184784 425079 4644703
/17 74122 3366133 425079 3865334
/18 154901 2660502 425079 3240482
/19 324772 2001507 425079 2751358
/20 668726 1414803 425079 2508608
/21 1359642 1053287 425079 2838008

Those filters would not have false positives and thus are func-
tionally equivalent to an exact match that stores the full prefix.
However, storing the full prefixes requires more memory. The de-
tailed analysis of the memory requirements for each solution is
summarized in Table 6. The actions for the prefixes are supposed
to have eight bits which would be enough to code more than 200
outgoing next hops. It can be seen that the use of PCFs reduces the
memory required almost by half. When storing the full prefixes, a
cuckoo hash table with 512K buckets of four cells is used for /24
and with 128K buckets for /32. In the first case, each cell has 24+8
bits and in the second 32+8 bits. When using the proposed cuckoo
filters, the buckets and cells are the same but have sizes of 6+8 and
16+8 respectively. The results shows a memory savings close to
50% for the three routing tables taken into account.
Table 6: Memory in MB required for the LPM implementa-
tion storing the full prefixes (FULL), using PCFs, and using
the DIR-24-8 (DIR) scheme for different routing tables

AS20 AS6447 RIPE RCC
Node FULL PCFs DIR FULL PCFs DIR FULL PCFs DIR
/20 1.0 1.0 N/A 1.0 1.0 N/A 1.0 1.0 N/A
/24 4.0 1.9 16.0 8.0 3.5 16.0 8.0 3.5 16.0
/32 0.0 0.0 0.0 2.5 1.5 1.3 2.5 1.5 0.1
total 5.0 2.9 16.0 11.5 6.0 17.3 11.5 6.0 16.1
[%] 31% 18% 100% 66% 35% 100% 71% 37% 100%

5 CONCLUSIONS
This paper has presented the Perfect Cuckoo Filter (PCF) a data
structure derived from the cuckoo filter that completely eliminates
false positives. The proposed PCFs extend the concept of false
positive free Bloom filters supporting much larger universes and
set sizes, making them applicable in many scenarios. Additionally,
PCFs can also be used for <key,value> mapping. A side benefit of
PCFs is that their occupancy does not degrade as much as that of
traditional cuckoo filters when reducing the number of fingerprint
bits. The PCF has been simulated to check that it does avoid false
positives and two network functions have been implemented (a
blacklist and longest prefix match for IPv4), showing that the use
of PCFs can reduce the memory needed by approximately half in
both cases.
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APPENDIX: ARTIFACTS
The source code for the implementation of the Perfect Cuckoo Filter
has been made available at https://github.com/pontarelli/perfectCF.

The artifact directory contains:
• the source code to build the simulator,
• README.md — a brief description of the repository.

The simulator was developed in C++ and can be compiled with
a standard gnu compilation toolchain.

https://github.com/pontarelli/perfectCF
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